期刊文献+

距离度量下的一类非线性系统输出反馈控制

Output Feedback Control for a Class of Nonlinear Systems in Gap Metric
下载PDF
导出
摘要 针对一类非线性项下三角形依赖的输出反馈控制系统,在非线性距离度量框架下,设计状态观测器和反馈控制律稳定闭环,并分析控制器的鲁棒性.在有测量误差和输入误差时,控制器实现了闭环在距离度量意义下的稳定.当模型扰动小于正常数时,控制器可实现对于模型扰动的鲁棒稳定性. For the lower triangular nonlinear system,an observer and feedback control system are constructed to stabilize the closed-loop within the framework of nonlinear gap metric.In the presence of input error and measurement error,the designed controller is able to stabilize the closed-loop in the sense of gap metric.In the case that the plant perturbation is smaller than some positive constant,the controller achieves robust stability to the plant perturbation.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期1-6,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 教育部科学研究重点项目(107091) 教育部留学回国启动基金资助项目(210-413062)
关键词 非线性距离度量 输出反馈 鲁棒性 nonlinear gap metric output feedback robustness
  • 相关文献

参考文献9

  • 1GEORGIOU T, SMITH M. Optimal Robustness in the Gap Metric[J]. IEEE Transactions on Automatic Control, 1990, 35(6): 461--478.
  • 2GEORGIOU T, SMITH M. Robustness Analysis of Nonlinear Feedback Systems: an Input-Outpu Approach [J].IEEETransactions on Automatic Control, 1997, 42(9): 1200--1221.
  • 3GEORGIOU T, SMITH M. Remarks on "Robustness Analysis of Nonlinear Feedback Systems: an Input-Output Ap- proach"[J]. IEEE Transactions on Automatic Control, 2001, 46(1) : 171--172.
  • 4FRENCH M. Adaptive Control and Robustness in the Gap Metric [J]. IEEE Transactions on Automatic Control, 2008, 53(2): 461--478.
  • 5XIE Cheng-kang, FRENCH M. Gap Metric Robustness of a Backstepping Control Design [C]//Proceeding of the 42end IEEE Conference on Decsion and Control. New York: IEEE Press, 2003: 5180--5184.
  • 6XIE Cheng-kang, HUANG Wei, ZHOU Zhong-cheng, et al. A Nonlinear Output Feedback Control for Robust Stability in Gap Metric [C]// Proceeding of the 2007 American Control Conference. New York: IEEE Press, 2007: 2624--2629.
  • 7谢成康,林意.鲁棒稳定后推控制设计[J].控制与决策,2007,22(10):1181-1183. 被引量:1
  • 8QIAN Chun-jiang, SCHRADER C, LIN Wei. Global Regulation of a Class of Uncertain Nonlinear Systems Using Oupu Feedback [C]// Proceeding of American Control Conference. New York: IEEE Press, 2003: 1542--1547.
  • 9Keylan Alimhan,Hiroshi Inaba.Output Feedback Control for a Class of Nonlinear Systems[J].International Journal of Automation and computing,2006,3(3):215-221. 被引量:4

二级参考文献10

  • 1Kristic M, Kanellakopoulos I, Kokotovic P. Nonlinear and adaptive control design[M]. New York: Wiley, 1995.
  • 2Areak M, Kokotovic P. Redesign of baekstepping for robustness against unmodelled dynamics [J]. Int J of Robust and Nonlinear Control, 2001, 11(7): 633-643.
  • 3Arcak M, Seron M, Braslavasky J, et al. Robustification of backstepping against input unmodeled dynamics[J]. IEEE Trans on Automatic Control, 2000, 45(7):1358-1363.
  • 4Ezal K, Pan Z, Kokotovie P. Locally optimal and robust backstepping design [J ]. IEEE Trans on Automatic Control, 2000, 45(2): 260-271.
  • 5Freeman R. Integrator backstepping for bounded control and control rates [J ]. IEEE Trans on Automatic Control, 1998, 43(2): 258-262.
  • 6Ito H, Freeman R. State-dependent scaling design for a unified approach to robust backstepping [ J ]. Automatica, 2001, 37(6): 843-855.
  • 7Freeman R, Kristic M, Kokotovic P. Robustness of adaptive nonlinear control to bounded uncertainties [J]. Automatica, 1998, 34(10): 1227-1230.
  • 8Georgiou T, Smith M. Robustness analysis of nonlinear feedback systems: An inputoutput approach[J]. IEEE Trans on Automatic Control, 1997, 42(9): 1200-1221.
  • 9Xie C, French M. Gap metric robustness of a backstepping control design[C]. Proc of the 42nd IEEE Conf on Decision and Control. Hawaii, 2003, 5: 5180- 5184.
  • 10Vinnicombe G. Uncertainty and feedback: H∞ loopshaping and u-gap metric [ M]. London: Imperial College Press, 2000.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部