期刊文献+

大跨度铁路桥梁梁端伸缩装置对列车走行性影响的研究 被引量:16

Performance of Train Running over Expansion Joints at Beam Ends of Long-span Railway Bridge
下载PDF
导出
摘要 梁端伸缩装置是大跨度桥梁的重要组成部分,是容易受损的构件之一,对高速车辆的走行性影响较大。本文针对大跨度铁路桥梁梁端伸缩装置,建立结构动力分析的有限元模型,通过多工况车-桥(线)耦合振动计算,分析梁端伸缩装置自身变形、安装误差及梁端折角等因素对列车走行性的影响,提出车辆平稳性和乘客对车辆振动感觉的评判标准,并进一步基于车辆的平稳性和乘客对车辆振动的感觉确定车速及梁端竖向折角限值。研究表明,车辆响应对梁端竖向折角较为敏感。 The expansion joint at the beam end of a long-span bridge is an important attachment and also one of the most easily damaged components.It has important effect on train running performance.The FEM model was established for dynamic structural analysis of the expansion joint at the beam end of a long-span railway bridge.Vehicle-bridge(lines) coupling vibrations under multiple operating conditions were calculated.to investigate the influence of the deflection of the expansion joint,installation error and vertical rotation angle at beam ends on the running performance of vehicles.The criterions for evaluation of train running performance and passenger feeling to vibration were given.On the basis of the evaluation criterions,the allowable values of the train velocity and vertical rotation angle at the beam end were determined.The results show that vehicle responses are more sensitive to the vertical rotation angle at the beam end.
出处 《铁道学报》 EI CAS CSCD 北大核心 2012年第2期94-99,共6页 Journal of the China Railway Society
基金 国家自然科学基金(50508036) 铁道部科技研究开发计划
关键词 大跨度铁路桥梁 伸缩装置 车辆走行性 梁端竖向折角 Sperling指标 long-span railway bridge expansion joint train running performance vertical rotation angle at the beam end Sperling index
  • 相关文献

参考文献7

二级参考文献14

  • 1童大埙.铁路轨道[M].北京:中国铁道出版社,1990.163.
  • 2铁道部科技发展计划项目.阶段研究报告.轨道刚度对轨道和列车动力性能影响的仿真分析[M].西南交大,铁道部科学研究院,..
  • 3翟婉明,车辆-轨道耦合动力学,1997年
  • 4翟婉明,Int J Numer Methods Eng,1996年,39卷,24期,4199页
  • 5王其昌(译),板式轨道,1983年,13页
  • 6Fujii T, Maeda T, lshida H, et al. Wind-induced accidents of train/vehicles and their measure in Japan [ J ]. QR of RTRI, 1999, (1): 50-55.
  • 7Deodafis G. Simulation of ergodic multivariate stochastic processes [J]. Engineering Mechanics, 1996, (8): 778-787.
  • 8Scanlan R H. The action of flexible bridge under wind H: buffeting theory [J]. Sound and Vibration, 1987, 60 (2) : 201-211.
  • 9Scanlan R H, Tornko J J. Airfoil and bridges deck flutter derivatives [J]. Engineering Mechanics, 1971, 6: 1717- 1733.
  • 10Bucher C G, Lin Y K. Stochastic stability of bridges considering coupled modes [J]. Eng. Mech, 1987, 12: 2055-2071.

共引文献61

同被引文献145

引证文献16

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部