期刊文献+

含状态等式约束的分布式估计融合 被引量:2

Distributed Estimation Fusion for Systems with State Equality Constraints
原文传递
导出
摘要 在假设各传感器间观测噪声不相关的基础上,将最优线性无偏估计意义下的分布式最优估计融合公式推广至含状态等式约束的分布式估计融合问题中,并在此约束条件下,先将该约束系统直接转换为投影系统,再利用投影系统中的Kalman滤波估计,分别讨论了两种信息融合方式:中心式与分布式融合。进一步地指出中心式估计融合优于分布式估计融合,并在分布式融合结构下,得到了约束的Kalman滤波估计优于投影的Kalman滤波估计的结论。通过数值模拟论证了两种融合方式下的性能差异。 Under the assumption of independent observation noises across sensors,an optimal estimation fusion formula for a general distributed system in the sense of the best linear unbiased estimation(BULE) is extended to the distributed estimation fusion for systems with state equality constraints.These systems can be directly transformed to the projected systems,by using the constrained Kalman filtering for the projected system,such two estimation fusion architectures as centralized and distributed are discussed.Moreover,the conclusions that the centralized estimation fusion outperforms distributed,and the constrained Kalman filter estimation fusion is better than projected Kalman filter estimation fusion are acquired.Finally,a numerical simulation demonstrates the performance difference between these two cases.
出处 《通信技术》 2012年第2期121-124,128,共5页 Communications Technology
基金 数学地质四川省重点实验室开放基金资助项目(No.scsxdz2011006) 国家自然科学基金(批准号:60874107)
关键词 状态约束 投影系统 分布式Kalman滤波 最优线性估计融合 states constraints projected systems distributed Kalman filtering optimal linear estimation fusion
  • 相关文献

参考文献9

  • 1李川.基于Kalman的滤波目标精确跟踪技术研究[J].通信技术,2009,42(6):205-207. 被引量:8
  • 2徐自励,刘昌忠,黄忠涛,何东林.基于Kalman滤波的目标信号TOA测量校正[J].通信技术,2010,43(6):194-197. 被引量:5
  • 3MASSICOTTE D,MORAWSKI R,BARWICZ A.Incorporation of a Positivity Constraint into a Kalman-filter-based Algorithm for Correction of Spectrometric Data[J].IEEE Transactions on Instrumentation and Measurements,1995,44(01):2-7.
  • 4SIMON S,CHIA T L.Kalman Filtering with State Equality Constraints[J].IEEE Transactions on Aerospace and Electronic Systems,2002,38(01):128-136.
  • 5YANG C,BLASCH E.Fusion of Tracks with Road Constrains[J].Journal of Advances in Information Fusion,2008,3(01):14-32.
  • 6KO S,BITMEAD R R.State Estimation for Linear Systems with State Equality Constraints[J].Automatica,2007,43(08):1363-1368.
  • 7CHEN T.Comments on"State Estimation for Linear Systems with State Equality Constraints"[Automatica 43(2007)1363-1368][J].Automatica,2010,46(08):1929-1932.
  • 8ZHU Y M.Multi-sensor Decision and Estimation Fusion[M].Boston:Kluwer Academic Pubishers,2003,167-172.
  • 9BAR-SHALOM Y.On the Track-to-track Correlation Problem[J].IEEE Transactions on Automatic Control,1981,AC-26(02):571-572.

二级参考文献11

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 2蔡志武,赵东明.UKF滤波器性能分析及其在轨道计算中的仿真试验[J].武汉大学学报(信息科学版),2006,31(2):180-183. 被引量:13
  • 3Simon J. Julier. Unscented Filtering and Nonlinear Estimation in the pro of the ieee, vol. 92, No 3, March 2004.
  • 4Tarn T, Zarbosky J. A practical non-driving filter. AIAA Journal, 1970, 8 (06) :1127-1133.
  • 5[美] Kaplan E D,Hegarty C J.GPS原理与应用[M].第2版.寇艳红译.北京:电子工业出版社,2007:44-45,224-239.
  • 6Grewal M S,Andrews A P.Kalman Filtering Theory and Practice Using MATLAB,Second Edition[M].New York:John Wiley & Sons,Inc.,2001:114-164.
  • 7Simon D.Optimal State Estimation-Kalman,H∞,and Nonlinear Approaches[M].Hoboken:John Wiley & Sons,Inc.,2006:123-325.
  • 8Chui C K,Chen G.Kalman Fi ltering-with Real-Time Applications,Fourth Edition[M].Berlin,Heidelberg:Springer-Yerlag,2009:20-28.
  • 9Haykin S.Communication System,Fourth Edition[M].New York:John Wiley & Sons,Inc.,2001:193-201.
  • 10Welch G,Bishop G.An Introduction to the Kalnmn Filter[M].Los Angeles:CA,2001:35.

共引文献11

同被引文献13

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部