期刊文献+

小波包变换用于双模噪声的信号检测

Wavelet-packet Transform for Signal Detection of Bimode Noise
原文传递
导出
摘要 将小波包变换良好的时频分析能力用于分析双模噪声的统计特性,因为小波包变换具有带通滤波的作用,当分解的层数足够多时,变换可看作窄带系统,将双模噪声作某一尺的小波包变换,在此空间上双模噪声的输出近似于高斯分布,在这一空间上进行信号的识别与检测。将小波包变换用于双模噪声背景下的信号检测系统,并将此方法与经典检测系统进行性能上的比较,仿真结果表明,小波包方法优于经典检测方法。 A good time-frequency analysis of wavelet-packet transform is used to analyze the statistical properties of dual-mode noise. For the wavelet-packet transform has band-pass filtering effect, when the decomposition layers are sufficient enough, the change could be regarded as narrow-band system. The dual-mode noise is made a foot-long wavelet-packet transform, the output of the dual-mode noise in this space is approximated to the Gaussian distribution, and the signal is identified and detected. The wavelet-packet transform is used in signal detection system under dual-mode noise background. And the comparison of this method with classical detection system for their performance is done, the simulation result show that the wavelet-packet method is superior to the classical detection method.
出处 《通信技术》 2012年第2期125-128,共4页 Communications Technology
基金 国家自然基金科学项目(批准号:60971130)
关键词 双模噪声 小波包变换 经典检测系统 Bimode noise wavelet-packet transforms classical detection system
  • 相关文献

参考文献5

二级参考文献23

  • 1潘显兵.一种改进的小波阈值降噪方法性能分析[J].微计算机信息,2006,22(03S):112-113. 被引量:32
  • 2李庆武,陈小刚.小波阈值去噪的一种改进方法[J].光学技术,2006,32(6):831-833. 被引量:31
  • 3MALLAT S. Theory for Multi resolution Signal Decomposition: The Wavelet Representation[J].IEEE Transactions on Pattern Analysis and Machine IntelJJgence, 1989, 11(07):674 -693.
  • 4DONOHODL. De noising by Soft Thresholding[J].IEEE TransoIT, 1995,41(03):613-627.
  • 5DONOHO D L, JOHNSTON I M. Adapting to Unknown Smoothness Via Wavelet Shrinkage[J].Journal of American StatAssoc, 1995,12 (90):1200-1224.
  • 6Te-Won Lee,M S Lewicki,T J Sejnowski.ICA mixture models for unsupervised classification of non-Gaussian classes & automatic context switching in blind signal separation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1078
  • 7АВРощупкин.МатематическоеМоделированиеиСравнитель- ныйАнализХарактеристикАмплитудныхПодавителейНегауссовскихПом
  • 8Yunxin Zhao,Xinhua Zhuang,Sheu-Jen Ting.Gaussian mixture density modeling of non-Gaussian source for autoregressive process [J].IEEE Transactions on Signal Processing,1995,43(4):894-903.
  • 9S Chen,B Mulgrew,L Hanzo.Least bit error rate adaptive nonlinear equalizers for binary signaling [C].IEE Proceedings Communications,2003,150(1):29-36.
  • 10ВАЧердынцев,СДалабаев(山拜·达拉拜).ПриемСигналовнаФонеПомех[M].Минск:Белорусскийгосударственныйуниверситетинформатикиир

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部