期刊文献+

Video Copy Detection Based on Spatiotemporal Fusion Model 被引量:4

Video Copy Detection Based on Spatiotemporal Fusion Model
原文传递
导出
摘要 Content-based video copy detection is an active research field due to the need for copyright pro- tection and business intellectual property protection. This paper gives a probabilistic spatiotemporal fusion approach for video copy detection. This approach directly estimates the location of the copy segment with a probabilistic graphical model. The spatial and temporal consistency of the video copy is embedded in the local probability function. An effective local descriptor and a two-level descriptor pairing method are used to build a video copy detection system to evaluate the approach. Tests show that it outperforms the popular voting algorithm and the probabilistic fusion framework based on the Hidden Markov Model, improving F-score (F1) by 8%. Content-based video copy detection is an active research field due to the need for copyright pro- tection and business intellectual property protection. This paper gives a probabilistic spatiotemporal fusion approach for video copy detection. This approach directly estimates the location of the copy segment with a probabilistic graphical model. The spatial and temporal consistency of the video copy is embedded in the local probability function. An effective local descriptor and a two-level descriptor pairing method are used to build a video copy detection system to evaluate the approach. Tests show that it outperforms the popular voting algorithm and the probabilistic fusion framework based on the Hidden Markov Model, improving F-score (F1) by 8%.
出处 《Tsinghua Science and Technology》 EI CAS 2012年第1期51-59,共9页 清华大学学报(自然科学版(英文版)
基金 Supported by the National Key Basic Research and Development (863) Program of China (No. 2007CB311003)
关键词 video copy detection probabilistic graphical model spatiotemporal fusion model video copy detection probabilistic graphical model spatiotemporal fusion model
  • 相关文献

参考文献23

  • 1Wu Xiao, Hauptmann A G, Ngo C-W. Practical elimination of near-duplicates from web video search. In: Proceedings of the 15th International Conference on Multimedia. Augsburg, Germany, 2007: 218-227.
  • 2Guidelines for TRECVID 2008 Evaluation. http://www-n1pir.nist.gov/projects/tv2008/tv2008.htm. 2008.
  • 3Kraaij W. TRECVID-2009 content-based copy detection task overview. In: Proceedings of TRECVID Workshop, 2009.
  • 4Liu Lu, Lai Wei, Hua Xiansheng, et al. Video histogram: A novel video signature for efficient web video duplicate de?tection. In: Proceedings of the 13th International Multime?dia Modeling Conference. Singapore, 2006: 94-103.
  • 5Harris C, Stevens M. A combined comer and edge detector. In: Proceedings of the Fourth Alvey Vision Conference. Manchester, UK, 1988: 147-151.
  • 6Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece, 1999: 1150-1157.
  • 7Bay H, Tuytelaars T, Gool L. Surf: Speeded up robust fea?tures. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria, 2006: 404-417.
  • 8Datar M, Immorlica N, Indyk P, et al. Locality-sensitive hashing scheme based on p-stable distributions. In: Pro?ceedings of the Twentieth Annual Symposium on Compu?tational Geometry. Brooklyn, NY, USA, 2004: 253-262.
  • 9Coskun B, Sankur B, Menom N. Spatio-temporal trans?form-based video hashing. IEEE Transactions on Multime?dia, 2006, 8(6): 1190-1208.
  • 10Arya S, Mount D M, Netanyahu N S, et al. An optimal algorithm for approximate nearest neighbor searching. Journal of the ACM, 1998,45(6): 891-923.

同被引文献50

  • 1陈次白,季春,颜端武.视频信息检索技术的发展及应用[J].情报理论与实践,2005,28(5):542-545. 被引量:6
  • 2焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 3张治国,刘怀亮,马志辉,赵娜,张毅.基于内容的视频检索研究[J].情报杂志,2006,25(12):22-24. 被引量:3
  • 4LIN You-ru, HUANG Hui-yu, HSU W H.An embedded watermark technique in video for copyright protection[C]//Proc of the 18th International Conference on Pattern Recognition.[S.l.]:IEEE Press,2006:795-798.
  • 5HUA Xian-shang, CHEN Xian, ZHANG Hong-jiang.Robust video signature based on ordinal measure[C]//Proc of IEEE International Conference on Image Processing.[S.l.]:IEEE Press,2004:685-688.
  • 6RUBLEE E, RABAUD V, KONOLIGE K, et al.ORB:an efficient alternative to SIFT or SURF[C]//Proc of International Conference on Computer Vision.2011:2564-2571.
  • 7LOWE D G.Distinctive image feature from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8BAY H, ESS A, TUYTELAARS T, et al.SURF:speeded-up robust features[J].Computer Vision and Image Understanding,2008,110(3):346-359.
  • 9ATES T K, ESEN E, SOYSAL M, et al.Content based video copy detection with local descriptors[C]//Proc of the 18th Signal Proces-sing and Communications Applications Conference.[S.l.]:IEEE Press,2010:49-52.
  • 10张瑞年.基于SIFT 特征的视频拷贝检测技术研究与实现[D].郑州:解放军信息工程大学,2012.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部