期刊文献+

基于渐消卡尔曼滤波器的定位系统设计 被引量:20

Design of Localization System Based on Reducing Kalman Filter
下载PDF
导出
摘要 针对无人机捷联式惯性导航系统(Strap-down inertial navigation system,SINS)定位精度低、全球卫星定位系统(Global position system,GPS)定位的非自主性,建立了一种无人机SINS/GPS定位信息融合系统。采用渐消Kalman滤波技术,有效防止了SINS/GPS组合导航系统的滤波发散。采用自适应运算法则,从理论上证明了渐消卡尔曼滤波器的稳定性,得到了滤波器稳定要求的新的条件,与以往研究比较,条件更为宽泛。分别进行了SINS/GPS常规卡尔曼滤波仿真和渐消卡尔曼滤波仿真,结果表明:采用渐消卡尔曼滤波技术在工程实践上可以有效提高无人机的导航定位精度,并且易于工程实现。 Aiming at the low precision of navigation and position in strap-down inertial navigation system(SINS) of unmaned aerial vehicle(UAV) and the dependence of global position system(GPS),the SINS/GPS localization information fusion system is designed.The reducing Kalman filter is introduced to prevent SINS from distorting filter.The stability of the reducing Kalman filter is analyzed by a standard adaptive algorithm to obtain new and low requirement conditions for stability.Through derivation and simulation of reducing factor,the filter effect on system of reducing Kalman filter is compared with that of general filter.The simulation results show that reducing Kalman filter can improve the accuracy of navigation localization for UAV and can meet the need of engineering realization.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第1期134-138,共5页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 无人机 SINS/GPS组合导航系统 渐消Kalman滤波 稳定性 unmanned aerial vehicle SINS/GPS reducing Kalman filter stability
  • 相关文献

参考文献9

  • 1Dikshit V G,Mahapatra P R. Medium-coupled bus- based INS/GPS sensor fusion for accurate and reli- able positioning [C]// Proceedings of ESAV. Italy: Capri, 2008.
  • 2杨艳娟,卞鸿巍,田蔚风,金志华.一种新的INS/GPS组合导航技术[J].中国惯性技术学报,2004,12(2):23-26. 被引量:44
  • 3秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2004.
  • 4杨柏军,潘鸿飞,才晓峰.如何采用渐消卡尔曼滤波器防止捷联惯导系统滤波发散[J].微计算机信息,2005,21(4):13-14. 被引量:2
  • 5Wang Yuan, Wand Gang. Stochastic stability of the discrete-time Kalman filter [C] // Proceedings of the Sixth International Conference on Intelligent System Design and Applications. [S. 1. ] :IEEE, 2006.
  • 6Hoon K, Jang K, Lee G, et al. The stability analy- sis of the adaptive fading extended Kalman filter[C] //16th IEEE International Conference on Control Applications Part of IEEE Multi-conference on Sys- toms and Control Singapore. [S. 1. ] : IEEE, 2007 : 1- 3.
  • 7Solo V. Stability of the Kalman filter with stochastic time-varying parameters [C] // Proc of the 35th IEEE-CDC. Kobe, Japan:[s. n. ], 1996.
  • 8Guo L. Stability of recursive stochastic tracking al- gorithms [J]. SIAM JL Control, 1994, 32: 1195- 1125.
  • 9Guo L, Li Ljung. Exponential stability of general tracking algorithms[J]. IEEE Tran Autom Contr, 1995,40:1376-1387.

二级参考文献5

共引文献118

同被引文献175

引证文献20

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部