期刊文献+

新的基于特征关系表述的步态识别算法

New feature description based on feature relationships for gait recognition
下载PDF
导出
摘要 为了快速有效地进行步态识别,利用特征关系非平稳分布的统计特性,提出了一种新的基于特征关系表述的步态识别算法。首先,将剪影轮廓相邻像素点间8邻域相对方向标号作为特征关系属性一,将轮廓边界点与中心点间的距离作为特征关系属性二,经直方图归一化处理,得到两种关系属性的联合概率;其次,结合主成分分析(PCA)降维的方法,提取特征主向量;最后,采用最近邻分类器进行识别分类。实验证明,该算法在CASIA步态数据库上,最高达到了90%以上的识别率,而且与传统的特征关系表述步态识别算法相比,关系属性联合概率矩阵维数由900维下降到240维,大大降低了算法的计算代价。 In order to carry on the gait recognition fast and efficiently,a new feature relationship based feature representation was proposed in this paper,which utilized nonstationarity in the distribution of feature relationships.Firstly,relative direction between two adjacent edge pixels in 8-neighborhood region was labeled as one of the attributes characterizing relationship,and distance from edge pixel to shape centroid point as the other attribute.Joint probability function of the two attributes was estimated by normalized histogram of observed values.Secondly,Principal Component Analysis(PCA) was adopted for feature reduction.Finally,the nearest-neighbor classifier was adopted for classification.The experimental result demonstrates that the proposed method was used to CASIA gait database,and got the best recognition rate of more than 90%.Feature dimension of the attributes joint probability matrix is reduced from 900 to 240 with relatively lower computational cost.
出处 《计算机应用》 CSCD 北大核心 2012年第3期885-888,892,共5页 journal of Computer Applications
基金 武汉市科技供需对接计划项目(201051824575) 湖北省自然科学基金资助项目(2010CDB02001)
关键词 步态识别 特征关系 特征表述 主成分分析 最近邻分类器 gait recognition feature relationship feature representation Principal Component Analysis(PCA) nearest-neighbor classifier
  • 相关文献

参考文献15

  • 1VEERARAGHAVAN A,CHOWDHURY A R,CHELLAPPA R.Matching shape sequences in video with applications in human movement analysis[J].IEEE Transactions on Patten Analysis and Machine Intelligence,2005,27(12):1896-1909.
  • 2SHUTLER J D,NIXON M S.Zernike velocity moments for description and recognition of moving shapes[C] // Proceedings of the British Machine Vision Conference. Manchester, UK:[s.n.] ,2001:705-714.
  • 3HAYFRON-ACQUAH J B,NIXON M S,CARTER J N.Automatic gait recognition by symmetry analysis[J].Pattern Recognition Letters,2003,24(13):2175-2183.
  • 4HUANG P S,HARRIS C J,NIXON M S.Recognizing humans by gait via parametric canonical space[J].Journal of Artificial Intelligence in Engineering,1999, 13(4):359-366.
  • 5WANG LIANG,NING HUA-ZHONG,HU WEI-MING.Gait recognition based on procrustes shape analysis[C] // IEEE International Conference on Image Processing. Piscataway, N J: IEEE Press,2002:433-436.
  • 6王亮,胡卫明,谭铁牛.基于步态的身份识别[J].计算机学报,2003,26(3):353-360. 被引量:158
  • 7KALE A,RAJAGOPALAN A,CUNTOOR N,et al.Gait based recognition of humans using continuous HMMs[C] // Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition.Piscataway,NJ:IEEE Press,2002:336-341.
  • 8HUET A,HANCOCK E.Line pattern retrieval using relational histograms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,12(13):1363-1370.
  • 9SCHIELE B,CROWLEY J.Recognition without correspondence using multidimensional receptive field histograms[J].International Journal of Computer Vision,2000,36(1):31-50.
  • 10VEGA I R,SARKAR S.Experiments on gait analysis by exploiting nonstationarity in the distribution of feature relationships[C] //Proceedings of the 16th International Conference on Pattern Recognition.Washington,DC:IEEE Computer Society,2002:1-4.

二级参考文献21

  • 1Wang L, Hu W, Tan T. Recent developments in human motion analysis. Pattern Recognition,2003,36(3):585~601
  • 2Phillips J, Moon H, Rizvi S, Rause P. The FERET evaluation methodology for face recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090~1104
  • 3Jain A, Bolle R, Pankanti S. Biometrics: Personal Identification in Networked Society. Boston:Kluwer Academic Publishers, 1999
  • 4Nixon M, Carter J, Cunado D, Huang P, Stevenage S. Automatic gait recognition. In: Proceedings of BIOMETRICS Personal Identification in Networked Society, 1999. 231~249
  • 5Niyogi S, Adelson E. Analyzing and recognizing walking figures in XYT. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, USA, 1994. 469~474
  • 6Cunado D, Nixon M, Carter J. Using gait as a biometric, via phase-weighted magnitude spectra. In: Proceedings of International Conference on Audio- and Video-based Biometric Person Authentication, Crans-Montana, Switzerland, 1997. 95~102
  • 7Little J, Boyd J. Recognizing people by their gait: The shape of motion. Journal of Computer Vision Research, 1998, 1 (2): 2~32
  • 8Murase H, Sakai R. Moving object recognition in eigenspace representation: Gait analysis and lip reading. Pattern Recognition Letters, 1996, 17: 155~162
  • 9Huang P, Harris C, Nixon M. Human gait recognition in canonical space using temporal templates. Vision Image and Signal Processing, 1999, 146 (2): 93~100
  • 10Shutler J, Nixon M, Harris C. Statistical gait recognition via temporal moments. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, Austin, Texas, 2000. 291~295

共引文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部