期刊文献+

认知的历史发生原理及其教学工程化——以数学学科为例 被引量:31

Historical-genetic Principle of Cognition and Its Educational Implication——Taking Mathematics as an Example
下载PDF
导出
摘要 生物发生律认为个体发生是种系发生短暂而迅速的重演.迁移到教学领域,这条法则意味着个体知识的发生过程遵循人类知识的发生过程.有效的学习要求学习者追溯正在学习的主题在历史中演变的主要步骤.围绕这条法则,人们展开了经验的论述、实证的检验、理论的探讨.这条法则为用教育取向的数学史发展教师的学科教学知识奠定了理论基础.以教育取向的数学史为指导,教师可以更好地发展学科教学知识,进行教学设计,从而实现认知的历史发生原理的教学工程化。 The biogenetic law is that ontogenesis recapitulates phylogenies. This law states that in a brief period the development of the embryo of an animal recapitulates the historical development of its ancestors. Transferred to the realm of pedagogy the law implies that the genesis of knowledge in the individual follows the same course as the genesis of the knowledge in the race. Many discussions have stated on this law. There are experiential points, empirical tests and theoretical studies. This law is the basis of educational orientation to the history of mathematics which can improve teacher's pedagogical content knowledge. Guided by the history of the history of mathematics, the teacher can do a good teaching design and develop pedagogical content knowledge.
出处 《数学教育学报》 北大核心 2012年第1期26-29,42,共5页 Journal of Mathematics Education
基金 国家自然科学基金——有条件限制的几何定理机器证明(60903023) 江西省高等学校教学改革研究课题——信息技术背景下的学科教学知识(JXJG10226)
关键词 生物发生律 历史发生原理 教师教育 教学工程化 学科教学知识 教学设计 the biogenetic law the historical-genetic principle teacher education pedagogical knowledge engineering pedagogical content knowledge teaching design
  • 相关文献

参考文献35

  • 1Hung Liu, Margaret L. Niess an Exploratory Study of College Students' Views of Mathematical Thinking in a Historical Approach Calculus Course [J]. Mathematical Thinking and Learning, 1908-1992, 8(4): 373-406.
  • 2Fauve J, Van Mannen J. History in Mathematics Education[M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 3普勒,燕宏远.世界著名生物学家传记[M].北京:科学出版社,1985.
  • 4丹尼尔·坦纳,劳雷尔·坦纳著.学校课程史[M].崔允漷等译.北京:教育科学出版社,2006.238.318.239.354.
  • 5刘放桐.现代西方哲学[M].北京:人民出版社,2000.
  • 6斯宾塞.斯宾塞教育论著选[M].胡毅,王承绪译.北京:人民教育出版社,2005.
  • 7Howson, G~ A history of Mathematical Education in England [M]. Cambridge University Press, 1982.
  • 8Kline M. Logic Versus Pedagogy [J]. American Mathematical Monthly, 1970, 77(3): 264-28.
  • 9Emest P. The History of Mathematics in the Classroom [J]. Mathematics in School, 1998, 27(4):25.
  • 10吴文俊.世界著名数学家传记[M].北京:科学出版社,2000.

二级参考文献45

  • 1汪晓勤,方匡雕,王朝和.从一次测试看关于学生认知的历史发生原理[J].数学教育学报,2005,14(3):30-33. 被引量:28
  • 2汪晓勤,张小明.HPM研究的内容与方法[J].数学教育学报,2006,15(1):16-18. 被引量:115
  • 3Gulikers I, Blom K. "A Historical Angle": A Survey of Recent Literature on the Use and Value of History in Geometrical Education [J]. Educational Studies in Mathematics, 2001, (47): 223-258.
  • 4Harper E. Ghosts of Diophantus [J]. Educational Studies in Mathematics. 1987. ( 18): 75-90.
  • 5Fauvel J, Maanen J van. History in Mathematics Education [M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 6Kleiner I. Thinking the Unthinkable: The Story of Complex Numbers [J]. Mathematics Teacher, 1988, (81): 583-592.
  • 7McClenon R. B. A Contribution of Leibniz to the History of Complex Numbers [J]. American Mathematical Monthly,1923, (30): 369-374.
  • 8Smith D E. A History of Mathematics (Vol.2) [M]. Boston: Ginns, 1923.
  • 9Kline M. Mathematical Thought from Ancient to Modem Times [M]. New York: Oxford University University, 1972.
  • 10Struik D J. A Concise History of Mathematics [M]. London: G. Bell &Sons, 1954.

共引文献133

同被引文献209

引证文献31

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部