期刊文献+

面向入侵检测的集成人工免疫系统 被引量:10

Integrated artificial immune system for intrusion detection
下载PDF
导出
摘要 结合入侵检测的实际需求,提出了一种集成人工免疫系统(IAIS)。该系统结合了树突状细胞算法(DCA)和否定选择算法(NSA),DCA用于检测行为特征,NSA用于检测结构特征。通过KDD99数据集实验对该系统进行验证,并与其他方法进行了比较。实验结果表明,IAIS检测性能与经典分类算法相当。IAIS具有不依赖明确标识的数据来训练检测器,可结合行为特征和结构特征进行实时入侵检测的特点。 According to the practical requirements of intrusion detection, an integrated artificial immune system (IAIS) was proposed. The system combined dendritic cell algorithm (DCA) and negative selection algorithm (NSA). DCA was used to detect behavioral features. NSA was used to detect structural features. IAIS was validated on KDD 99 dataset. Comparisons to other approaches were made. The experimental results show that the detection performance of IAIS is comparable to classic classification algorithm. IAIS does not rely on labeled data to train detectors. It combines behav- ioral features and structural features to detect intrusions in real-time mode.
出处 《通信学报》 EI CSCD 北大核心 2012年第2期125-131,共7页 Journal on Communications
基金 国家自然科学基金资助项目(60872052)~~
关键词 人工免疫系统:集成人工免疫系统 树突状细胞算法 否定选择算法 入侵检测系统 artificial immune system integrated artificial immune system dendritic cell algorithm negative selection algorithm intrusion detection system
  • 相关文献

参考文献16

  • 1DASGUPTA D. Advances in artificial immune systems[J]. Theoretical Computer Science, 2006, 403(1): 11-32.
  • 2MATZINGER P. Tolerance, danger and the extended family[J]. Annual Review of Immunology, 1994, 12:991-1045.
  • 3GREENSMITH J, AICKELIN U, CAYZER S. Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection[A]. International Conference on Artificial Immune Systems[C]. Banff, Canada, 2005.153-167.
  • 4LI M. An approach to reliably identifying signs of DDOS flood attacks based on LRD traffic pattern recognition[J]. Computers & Security, 2004, 23(7):549-558.
  • 5LI M. Change trend of averaged hurst parameter of traffic under DDOS flood attacks[J]. Computers & Security, 2006, 25 (3):213-220.
  • 6JANEWAY C. The immune system evolved to discriminate infectious nonself from non-infectious self[J]. Immunology Today, 1992, 13:11-16.
  • 7SARAFIJANOVI~ S, BOUDEC J L. An artificial immune system for misbehavior detection in mobile ad-hoc networks with virtual thymus, clustering, danger signal, and memory detectors[A]. International Conference on Artificial Immune Systems[C]. Catania, Italy, 2004.342-356.
  • 8CHEN Y B, FENG C, ZHANG Q, et al. Negative selection algorithm with variable-sized r-contiguous matching rule[A]. International Conference on Progress in Informatics and Computing[C]. Shanghai, China, 2010.150-154.
  • 9GREENSMITH J. The Dendritic Cell Algorithm[D]. Nottingham, UK: School of Computer Science, University of Nottingham, 2007.
  • 10KAYACIK H G, ZINCIR-HEYWOOD A N, HEYWOOD M I. Selecting features for intrusion detection: a feature relevance analysis on KDD 99 intrusion detection datasets[A].Third Annual Conference on Privacy, Security and Trust[C]. New Brunswick, Canada, 2005.

同被引文献106

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部