期刊文献+

基于有限变形单晶塑性滑移的微观热-力耦合模型及其有限元计算 被引量:2

THE THERMO-MECHANICAL COUPLED MODEL OF SINGLE CRYSTAL BASED ON RATE-DEPENDENT SLIP DEFORMATION THEORY AND ITS FEM COMPUTATION
原文传递
导出
摘要 基于率相关的晶体塑性滑移理论,论文考虑晶体内部塑性变形产生的热以及快速热冲击作用下温度急剧变化产生热应力的热-力双向耦合效应,建立起微观单晶的瞬态热-弹-塑性耦合模型,推导出与温度有关的剪应变率和弹塑性切模量公式.根据论文建立的模型,对ABAQUS软件进行二次开发[1],数值模拟出<001>/{100}单晶Cu在单轴拉伸状态下的应力、应变与温度的关系和弹性模量的变化,结果如下:轴向应力随温度升高先呈线性增加再呈非线性减小,轴向应变随温度增加而增加;弹性模量随塑性变形的增加而降低,与分子动力学模拟的趋势[2]是一致的.数值实验表明,论文建立的模型和算法是正确合理的,且计算量远远小于分子动力学模拟. This paper presents the thermo-mechanical coupled model of single crystal based on rate-dependent plastic slip deformation theory and its FEM algorithm.The model includes two aspects:one is irreversible heat resulted by plastic deformation and another is a large amount of thermal stress from temperature changing under rapid thermal shock effect.Formulas of shear strain rate and shear modulus dependent on temperature are also given,and the subroutines to calculate stress and strain are coded based on ABAQUS software.The relations among stress,strain and temperature of 001/{100} single crystal copper under tension conditions are calculated by the model established.The results show that true stress are proportional to temperature at first and then nonlinear decreasing but true strain are increased with temperature increasing,so elastic modulus decreases with increasing plastic deformation.The numerical results are consistent with those simulated by molecular dynamics.It shows that the model and its FEM algorithm are reasonable,and their computing costs are less and less than MD simulation.
出处 《固体力学学报》 CAS CSCD 北大核心 2012年第1期32-38,共7页 Chinese Journal of Solid Mechanics
基金 国家重点基础研究973计划(2010CB832702) 国家自然科学基金项目(90916027)资助
关键词 晶体塑性 热力耦合 有限应变 有限元计算 crystal plasticity thermo-mechanical coupled finite strains FEM computation.
  • 相关文献

参考文献16

  • 1ABAQUS Theory Manual, Version 6. 2007,7.
  • 2Taylor G I. Plastic strain in metals[J]. Journal of the Institute of Metals, 1938,62 :307-324.
  • 3Hill R,Rice J R. Constitutive analysis of elastic plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids,1972,20:401-413.
  • 4Rice J R. Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity[J]. Journal of the Mechanics and Physics of Solids, 1971,19 :433 -455.
  • 5Asaro R J,Rice J R. Strain localization in ductile single crystals[J]. Journal of the Mechanics and Physics of Solids, 1977,25:309 -338.
  • 6Huang Y G. A user-material subroutine incorporating single crystal plasticity in the abaqus finite element program[J]. Mech-Report 178,1991.
  • 7吴艳青,黄风雷.动高压下HMX各向异性单晶及界面的热力学本构模型[J].中国科学(G辑),2009,39(9):1195-1203. 被引量:3
  • 8Sharat Chand Prasad. Constitutive Modeling of Creep of Single Crystal Superalloys[D]. Kanpur: Texas A &M University, 2005.
  • 9Miehe C. Entropic theroelasticity at finite strains. Aspects of the formulation and numerical implementation [J]. Computer Methods in Applied Mechanics and Engineering, 1995,120 : 243-269.
  • 10Simo J C, Miehe C. Associative coupled theroplasticity at finite strains: formulation numerical analysis and inplemention[J]. Computer Methods in Applied Mechanics and Engineering, 1992,98 :41-104.

二级参考文献26

  • 1Schoenfeld S E. Dynamic behavior of polycrystalline tantalum. Int J Plast, 1998, 14:871-890.
  • 2Nemat-Nasser S, Okinaka T, Ni L. A physically-based constitutive model for BCC crystals with application to polycrystal tantalum. J Mech Phys Solids, 1998, 46:1009-1038.
  • 3Becker R. Effects of crystal plasticity on materials loaded at high pressures and strain rates. Int J Plast. 2004, 20:1983-2006.
  • 4Sewell T D, Bedrov D, Menikoff R, et al. Elastic properties of HMX. In: Shock Compression of Condensed Matter. Furnish M D, Thadhani N N, Horie Y, eds. California: AIP, 2001. 399-402.
  • 5Menikoff R, Sewell T D. Equation of state data and fitting forms. Detonation Theory & Application, T-14. Theoretical Division. Los Alamos National Laboratory Report LA-UR-01-1847. 2001.
  • 6ZaugJ M. Elastic constants of β-HMX and tantalum, equation of state of supercritical fluids and fluid mixtures and thermal transport determinations. In: 11th International Detonation Symposium. Snowmass Conference Center. Snowmass Village, Colorado. 1998. 498-509.
  • 7Rae P J, Goldrein H T, Palmer S J P, et al. Quasi-static studies of the deformation and failure of beta-HMX based ploymer bonded explosives. Proc R Soc Lond A, 2002, 458(2019): 743-762.
  • 8Tan H, Liu C, Huang Y, et al. The cohesive law for the particle/matrix interfaces in high explosives. J Mech Phys Solids, 2005, 53(8): 1982-1917.
  • 9Tan H, Huang Y, Liu C, et al. The Mori-Tanaka method for composite materials with nonlinear interface debonding. Int J Plas, 2005, 21(10): 1890-1918.
  • 10Gilman J J. Micromechanics of flow in Solids. New York: McGraw-Hill, 1969.

共引文献43

同被引文献49

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部