期刊文献+

基于分形理论的开孔聚氨酯泡沫等效导热系数研究 被引量:10

Research on Effective Thermal Conductivity for Open-cell Polyurethane Foam Using Fractal Theory
下载PDF
导出
摘要 开孔聚氨酯泡沫保温材料是一种典型的多孔介质。采用分形理论描述开孔聚氨酯泡沫材料的微尺度空间结构,建立了简化单元体模型,提出了计算其有效导热系数的分形模型,并导出了气相和固相热传导计算公式、热辐射等效导热系数计算公式、材料总有效导热系数计算公式。模型计算值与实验测量值比较具有较好的一致性,同时总结了多孔介质材料绝热性能的主要影响因素。该分析方法对新型绝热材料的研制和绝热性能的提高具有实用价值。 The open cell polyurethane foam is a typical kind of porous material. Based on the fractal theory, the geometric structure inside the foam was illustrated and one simplified cell model was made. According to the model, the method of the equivalent thermal conductivity for the foam was described and the fractal dimension was calculated. The mathematic formulas for the fractal equivalent thermal conductivity combined with gas phase and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity. The calculated results had better agreement with the experimental data. And the main influence factors were summarized. The study is useful for the foam's adiabatic performance enhancement and new material development.
出处 《材料导报》 EI CAS CSCD 北大核心 2012年第4期143-146,共4页 Materials Reports
基金 上海市教委重点学科资助项目(J50603) 上海海事大学研究生创新基金(yc2009111)
关键词 聚氨酯泡沫 多孔介质 分形导热模型 导热系数 polyurethane form, porous media, fractal thermal conduction model, thermal conductivity
  • 相关文献

参考文献14

  • 1陈永平,施明恒.基于分形理论的多孔介质导热系数研究[J].工程热物理学报,1999,20(5):608-612. 被引量:27
  • 2Mandelbrot B B.The fractal geometry of nature[M].New York:Freeman W H,1983.
  • 3Pitchumani R,Yao S C.Correlation of thermal conductivities of unidirectional fibrous composites using local fractal techniques[J].J Heat Transfer,1991,113(4):788.
  • 4Pitchumani R.Evaluation of thermal conductivities of disordered composite media using a fractal model[J].J Heat Transfer,1991,121(1):163.
  • 5Yu B M,Li J H.Some fractal characters of porous media fractal[J].Porous Media,2001,9(3):365.
  • 6Ma Y T,Yu B M,Zhang D M,et al:A self-similarity model for effective thermal conductivity of porous media[J].J Appl Phys,2003,36(17):2157.
  • 7张东晖,杨浩,施明恒.多孔介质分形模型的难点与探索[J].东南大学学报(自然科学版),2002,32(5):692-697. 被引量:18
  • 8张东辉,金峰,施明恒,杨浩.分形多孔介质中的热传导[J].应用科学学报,2003,21(3):253-257. 被引量:13
  • 9Thovert J F,Wary F,Adler P M.Thermal conductivity of random media and regular fractals[J].J Appl Phys,1990,68(8):3872.
  • 10Pitehtmmni R,Ramakrishnan B.A fractal ceometry model for evaluating permeabilities of porous performs used in liquid composite molding[J].Int J Heat Transfer,1999,42(12):2199.

二级参考文献10

  • 1帕坦卡.导热与流体流动的数值计算[M].北京:科学出版社,1984..
  • 2黄筠.分形物理学[M].北京大学内部资料,..
  • 3Thovert J F, et al. Thermal conductivity of random media and regular fractals [J]. Journal of Applied Physics, 1990, 68(8):3872-3883.
  • 4Franz A, et al. The pore structure of Sierpinski carpets [J]. Journal of Physics A: Math Gen 2001, 34:8731 - 8765.
  • 5Adler P M, et al. Fraetal porous media[J]. Transport in Porous Media, 1993, 13:41- 78.
  • 6Shashwati. Arehie's law from a fraetal model forporous rocks[J]. Physical Review, 1997, 55 (13) :8038 - 8041.
  • 7Adrian S Sabau,Proc Nat Heat Thansfer Conf,1997年,11卷,121页
  • 8张济中,分形,1995年
  • 9Pitchumani R,J Heat Transfer,1991年,113卷,788页
  • 10张东辉,金峰,施明恒,杨浩.多孔介质渗流随机模型[J].应用科学学报,2003,21(1):88-92. 被引量:12

共引文献53

同被引文献98

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部