期刊文献+

一种求解高维约束优化问题的γ-PSO算法 被引量:2

γ-PSO algorithm for solving high-dimensional constrained optimization problems
下载PDF
导出
摘要 PSO算法是一种随机搜索的群体智能算法,在求解高维约束优化问题,尤其是在约束条件较多时,PSO算法易陷入局部极值且收敛速度慢。针对上述问题,对PSO算法进行了改进,提出了γ-PSO算法,把PSO算法的随机数由(0,1)扩展到(-1,1),这样加大了粒子飞行速度和飞行方向的多样性,从而使PSO算法具有摆脱局部极值的能力。对γ-PSO算法进行了求解高维约束优化问题的实验,实验结果表明γ-PSO算法能收敛到全局最优值,收敛性能明显优于其他改进的PSO算法和其他优化算法。 PSO algorithm is one of random searching swarm intelligence algorithm for solving multi-dimensional constrained optimization problem. But when the constraints become more, PSO algorithm is easy to fall into local minimum and slow convergence. In response to these problems, γ-PSO algorithm is proposed, an improved PSO algorithm, which extends random numbers from(0, 1)to(1, 1). In this way, the PSO algorithm can avoid local minimum by increasing flying speed and diversity of flying direction of particle. Finally, the results of experiments using γ-PSO algorithm for solving high-dimensional constrained optimization problems show that the γ-PSO algorithm can converge to the global optimum, and its convergence is superior to other improved PSO algorithms and other optimization algorithms.
出处 《计算机工程与应用》 CSCD 2012年第7期43-47,83,共6页 Computer Engineering and Applications
基金 山西省自然科学基金(No.2009011018-4)
关键词 PSO算法 约束优化问题 适应度函数 全局极值 局部极值 Particle Swarm Optimization(PSO)algorithm constrained optimization problem fitness function global optimum local minimum
  • 相关文献

参考文献16

  • 1Shi Y.A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence,1998:69-73.
  • 2Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization[C]// Proc of the Congress on Evolutionary Computation,Seoul Koreal, 2001.
  • 3Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proc of the Congress on Evolutionary Computation, 1999:1951-1957.
  • 4Angeline P J.Evolutionary optimization versus particle swarm optimization: philosophy and performance differences[C]//Evolutionary Programming VII, 1998: 601-610.
  • 5Lovbjerg M, Rasmussen T K,Krink T.Hybrid particle swarm optimization with breeding and subpopulations[C]//Proc of the third Genetic and Evolutionary Computation Conf, San Francisco, USA, 2001.
  • 6Higasshi N, Iba H.Particle swarm optimization with Gaussian mutation[C]//Proc of the Congress on Evolutionary Computation, 2003: 72-79.
  • 7van den Bergh F, Engelbrecht A P. Training product unit networks using cooperative particle swarm optimizers[C]//Proc of the Third Genetic and Evolutionary Computation Conf, San Francisco, USA, 2001.
  • 8van den Bergh F,Engelbrecht A P. Effects of swarm size cooperative particle swarm optimizers[C]//Proc of the Third Genetic and Evolutionary Computation Conf, San Francisco,USA,2001.
  • 9Kennedy J, Eberhart R.Discrete binary version of the particle swarm algorithm[C]//IEEE Int'l Conf on Computational Cybernetics and Simulation, 1997:4104-4108.
  • 10高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104

二级参考文献45

  • 1周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 2王东升 曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995..
  • 3Yi Shang.Global Search Methods for Solving Nonlinear Optimization Problems[DJ.Doctor Dissertation.University of Illinois at UrbanaChampaign,1997
  • 4J Kennedy.The particle swarm:social adaptation of knowledge[C].In:Proc IEEE Int Conf on Evolutionary Computation,1997:303~308
  • 5Carlos A,Coello Ceello.A Survey of Constrained Handling Techniques used with Evolutionary Algorithms
  • 6Mitsuo Gen,Runwei Cheng.Genetie algorithms and engineering design [M].New York:John Wiley & Sona,1997
  • 7A Homaifar,S H Y Lai,X Qi.Constrained optimization via genetic algorithms[J].Simulation,1994; 62 (4):242~254
  • 8David M Himmelblau.Applied nonlinear programming[M].New York:McGraw-Hill,1972
  • 9J Kennedy,R Eberhart.Particle Swarm Optimization[C].In:Proc IEEE Int Conf on Neural Networks,1995:1942~1948
  • 10R Eberhart,J Kennedy.A New Optimizer Using Particle Swarm Theory[C].In:Proc 6th Iht Symposium on Micro Machine and Human Science,1995:39~43

共引文献276

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部