期刊文献+

利用脉冲耦合神经网络的纹理图像检索方法 被引量:8

Texture retrieval method using pulse-coupled neural network
下载PDF
导出
摘要 为提高基于内容的图像检索系统(CBIR)中纹理特征提取的有效性,进一步提升CBIR系统的整体性能。提出了一种基于脉冲耦合神经网络的纹理图像检索方法。脉冲耦合神经网络(PCNN)是新一代的人工神经网络,在数据处理上具有很多优势。特征提取时具有平移、旋转、尺度、扭曲等不变性,以及很好的抗噪性,而这一点非常适合于图像检索系统。利用PCNN及简化模型ICM得到对应于不同灰度值的二值图像序列,计算序列中每幅图像的熵序列,其一维的特征矢量作为纹理特征。采用Eu-clidean距离进行相似度计算,建立了一套基于示例查询图像的纹理图像检索系统。实验结果表明,与小波包等特征提取方法相比,该方法不仅对噪声具有较强的鲁棒性,同时能降低特征向量维数,具有尺度、平移和旋转不变性,而且能取得更高的检索率。 To increase the validity of texture feature extraction in Content-Based Image Retrieval(CBIR)system, a novel approach based on Pulse-Coupled Neural Network(PCNN)for texture image retrieval is proposed. PCNN is a new generation of artificial neural networks and powerful in data processing. The outputs of PCNN and Intersecting Cortical Model(ICM)represent unique features of original stimulus are invariant to translation, rotation, scaling and distortion, which is particularly suitable for content-based image retrieval system. By adopting PCNN and simplified PCNN model ICM, the dual value image sequence corresponding to different gray levels is obtained. The variance of each image in entropy sequence is then calculated to convert into one dimensional eigenvector used to represent the image features. The Euclidean distance is used to compute the similarity between images. A texture retrieval system based on query image is developed. The experimental results show, compared to the wavelet package transform, this approach can not only robust to the noises in images similarity retrieval and reduce the dimension of feature vectors, and has the property of shift, scale and rotation invariance, but also get higher accuracy rate.
出处 《计算机工程与应用》 CSCD 2012年第7期201-204,241,共5页 Computer Engineering and Applications
关键词 基于内容的图像检索(CBIR) 脉冲耦合神经网络(PCNN) 交叉皮层模型(ICM) 特征提取 Content-Based Image Retrieva(lCBIR) Pulse Coupled Neural Network(PCNN) Intersecting Cortical Mode(lICM) feature extraction
  • 相关文献

参考文献19

  • 1Marques O,Furht B.MUSE:content-bascd image search and retrieval system using relevance feedback[J].Multimedia Tools and Applications, 2002,17 (4) : 21-50.
  • 2Datta R,Joshi D,Li J,et al.Image retrieval:ideas,influences,and trends of the new age[J].ACM Computing Surveys,2008,40(2): 1-60.
  • 3Liapis S, Tziritas G.Color and texture image retrieval using chromaticity histograms and wavelet frames[J].IEEE Transactions on Multimedia, 2004,5 (6) : 676-686.
  • 4Do M N,Vetterl I M.Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distanee[J].IEEE Transactions on Image Processing,2002,2( 11 ) : 146-158.
  • 5Kokarem B,Iswas P K.Texture image retrieval using new rotated complex wavelet filters[J].IEEE Transactions on Systems,Man, and Cybemetics,2005,35(6): 1168-1178.
  • 6Do M N, Vetterli M.Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models[J].IEEE Transactions on Multimedia,2002,4(4):517-527.
  • 7Do M N.Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov modcls[J].IEEE Signal Processing Letters,2003,10(4): 115-118.
  • 8Godin C, Gordon M B, Muller J D.Pattem recognition with spiking neurons-performance enhancement based on a statistical analysis[C]//Proceedings of the IEEE International Joint Conference on Neural Networks, 1999:1876-1880.
  • 9Rughooputh H C S,Bootun H,Rughooputh S D D V.Pulse coded neural network for sign recognition for navigation[C]//Proceedings of the IEEE International Conference on Industrial Technology, 2003,1 : 89-94.
  • 10Karvonan J.A simplified pulse-coupled neural network based seaice classifier with graphical interactive training[C]//Proceedings of the IEEE International Geosciences and Remote Sensing Symposinm,2000,2:681-684.

同被引文献82

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部