期刊文献+

带Ivlev反应项的捕食模型的全局分歧 被引量:4

GLOBAL BIFURCATION FOR A PREDATOR-PREY MODEL WITH IVLEV FUNCTIONAL RESPONSE
原文传递
导出
摘要 在Dirichlet边界条件下研究一类带Ivlev反应项的捕食模型.利用谱分析和分歧理论的方法,证明了发自半平凡解的局部分歧正解的存在性,同时运用线性特征值扰动理论给出局部分歧解的稳定性.最后将局部分歧延拓为全局分歧,从而得到正解存在的充分条件. A predator-prey model with Ivlev functional response is studied under Dirichlet boundary conditions.By the spectral analysis method and the bifurcation theory,the existence of positive solutions bifurcating from the semi-trivial solutions is obtained,and some stability results are presented by linear eigenvalue perturbation theory.Moreover,making use of global bifurcation theory,two sufficient conditions for the existence of positive solutions are established.
出处 《系统科学与数学》 CSCD 北大核心 2011年第12期1633-1640,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金资助项目(10971124 11001160) 陕西省自然科学基础研究计划资助项目(2011JQ1015) 陕西科技大学博士科研启动基金项目(BJ10-17)
关键词 Ivlev反应项 分歧 稳定性 Ivlev functional response bifurcation stability
  • 相关文献

参考文献2

二级参考文献11

  • 1Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol., 1975, 44(1): 331-340
  • 2DeAngelis D L, Goldstein 1% A, O'neill 1% V. A model for trophic interaction. Ecology, 1975, 56(2): 881-892
  • 3Blat J, Brown K J. Global bifurcation of positive solutions in some systems of elliptic equations. SIAM J. Math. Anal., 1986, 17(6): 1339-1353
  • 4Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans. Araer. Math. Soc., 1997, 349(6): 2443-2475
  • 5Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc. R. Soc. Edinburgh Sect. A, 2001, 131(2): 321-349
  • 6Ye Q X, Li Z Y. Introduction to Reaction-Diffusion Equations. Beijing: Science Press, 1990
  • 7Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Spring-Verlag, 1983
  • 8Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues.J. Functional Analysis, 1971, 8(2): 321-340
  • 9Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Analysis, 2000, 39(7): 817-835
  • 10Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rational Mech. Anal., 1973, 52(2): 161-180

共引文献23

同被引文献15

  • 1IVLEV V.Experimental ecology of the feeding fishes[M].Yale University Press,New Haven,1961.
  • 2WU X J,HUANG W T.Dynamic analysis of a one-preymulti-predator impulsive system with Ivlev-type functional[J].Ecological Modelling,2009,220:774-783.
  • 3KADOTO T,KUTO K.Positive steady states for a prey-predator model with some nonlinear diffusion terms[J].JMath Anal Appl,2006,323:1387-1401.
  • 4GUO G H,WU J H,MA C.Nonlinear diffusion effect onbifurcation structures for a predator-prey model[J].Differ-ential and Integral Equations,2011,24(1/2):177-198.
  • 5PAO C V.Strongly coupled elliptic systems and applica-tions to Lotka-Volterra models with cross-diffusion[J].Nonlinear Analysis,2005,60(7):1197-1217.
  • 6CRANDALL M G,RABINOWITZ P H.Bifurcation fromsimple eigenvalues[J].J Functional Analysis,1971,8(2):321-340.
  • 7WU J H.Global bifurcation of coexistence state for thecompetition model in the chemostat[J].NonlinearAnalysis,2000,39(7):817-835.
  • 8叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1994.108,205.
  • 9郭改慧,李艳玲.带B-D反应项的捕食-食饵模型的全局分支及稳定性[J].应用数学学报,2008,31(2):220-230. 被引量:16
  • 10刘开源,陈兰荪.捕食者具脉冲扰动与Ivlev功能性反应的时滞捕食-食饵模型[J].大连理工大学学报,2008,48(6):926-931. 被引量:10

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部