期刊文献+

上海黄金期货收益率波动状态转换行为研究—基于MCMC参数估计的MRS-GARCH(1,1)模型 被引量:2

下载PDF
导出
摘要 摘要:本文用MCMC的方法建立了两状态MRS—GARCH(1,1)模型对上海黄金期货市场收益率的波动特征进行分析,并与单状态的GARCH(1,1)模型结果比较,研究表明两状态的MRS—GARCH(Markov Regime Switching GARCH)模型的拟合和预测效果均优于单状态GARCH模型;上海黄金期货市场收益率波动呈现出阶段性的高、低波动状态,低波动状态表现为同方差特征,高波动状态具有波动聚集性和持续性,且具有明显区别于低波动状态的正收益率,高波动状态有显著平均正收益的结果可以用于金融实践;同时低波动状态的持续时间较短,高波动状态持续时间更长,且更易于从低波动状态转为高波动状态。最后解释了引起黄金期货市场收益率高低漓动状杰的国内外绨济、砖管丙素.
作者 王兆才
出处 《世界经济情况》 2012年第1期71-77,共7页 World Economic Outlook
  • 相关文献

参考文献13

  • 1Engle R F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation [J]. Econometrica. 1982, 50:987- 1007.
  • 2Bolleslev T. Generalized autoregressive conditional heteroskedasticity [J] . Journal of Econometrics. 1986, 31:307-327.
  • 3Lamoureux, C. G, and W. D Lastrapes. Persistencein Variance, Structural Change, and the GARCH Model[J] . Journal of Business&Economic [J]. Statistics, 1990, 8 (2) :225-234 .
  • 4Smith. Markov-switching and stochastic volatility diffusion models of short- term interest rates . J Business Econ Statist. 2002, 20:183-197.
  • 5Cai Jun. A Markov Model of Switching-Regime ARCH . Journal of Business and Eeonomic Statistics, 1994, 12 (3) :309-316.
  • 6Hamilton J D, Lin G. Stock market volatility and business cycle . Journal of Applied Econometrics, 1996,11 (5) :573-593.
  • 7WAI MUN FONG. Volatility Persistence and Switching ARCH in Japanese Stock Returns[J]. Asia - Pacific Financial Markets, 1997,4(1).
  • 8Albert,J. H. ,Chib,S. Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts .J. Bus. Econ. Stat. 1993, 11:1-15.
  • 9Franc Klaassen. Improving GARCH volatility forecasts with regime-switching GARCH[J]. Empirical Economics, 2002,27(2).
  • 10孙金丽,张世英.具有结构转换的GARCH模型及其在中国股市中的应用[J].系统工程,2003,21(6):86-91. 被引量:29

二级参考文献58

共引文献84

同被引文献23

  • 1Chou R Y. Volatility persistence and stock valuation:Some empirical evidence using GARCH[J].Journal of Applied Econometrics,1988,(04):279-294.
  • 2Poon S H,Taylor S J. Stock return and volatility:an empirical study of the UK stock market[J].Journal of Banking and Finance,1992,(01):37-59.
  • 3Hamilton J D,Susmel R. Autoregressive conditional heteroskedasticity and changes in regime[J].Journal of Econometrics,1994,(1/2):307-333.
  • 4Fisher R A. On the mathematical foundations of theoretical statistics[J].Philosophical Transactions of the Royal Society,1922.309-368.
  • 5Albert J H,Chib S. Bayes inference via Gibbs sampling of autoregressive time series subject to Makov mean and variance shifts[J].Journal of Business and Economics Statistics,1993,(01):1-15.
  • 6Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J].Journal of Econometrics,1986,(03):307-327.
  • 7Nelson D B. Conditional heteroskedasticity in asset return:A new approach[J].Econometrica:Journal of the Econometric Society,1991,(02):347-370.
  • 8Glosten L R,Jagannathan R,Runkle D E. On the relation between the expected value and the volatility of the nominal excess return on stocks[J].The Journal of Finance,1993,(05):1779-1801.
  • 9Henneke J S,Rachev S T,Fabozzi F J. MCMC-based estimation of Makov switching ARMA-GARCH models[J].Applied Economics,2011,(03):259-271.
  • 10Rachev S T,Hsu J J,Bagasheva B S. Bayesian Methods in Finance[M].Hoboken:John Wiley and Sons,2008.203-227.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部