期刊文献+

基于灰度和空间特性的谱聚类图像分割 被引量:8

Spatial and gray feature-based spectral clustering for image segmentation
下载PDF
导出
摘要 为了克服谱聚类图象分割方法性能容易受到图像大小和相似性测度的影响,提出一种基于灰度和空间特性的谱聚类图像分割算法。该算法不对图像中的像素之间建立相似性,而是利用各个像素的灰度在图像中的分布信息和像素点的空间邻接信息建立灰度之间的相似关系,通过对图像中灰度的分类进而获得原始图像的分割结果。因此,该算法不会受到图像大小的限制,无论对于多大的图像,相似性矩阵的大小都是小于等于256×256。Berke-ley基准图像数据集上的分割仿真实验验证了该方法的有效性。 To overcome the influence of the image size and similarity measure to the performance of spectral clustering,a novel spatial and gray feature-based spectral clustering algorithm for image segmentation is proposed.It introduces a function called spatial-gray compactness to construct the similarity relationship between any two grays,not between any two pixels.The method utilizes the distribution of the gray and the spatial adjacency of the pixel in the image to classify the gray levels,and eventually performs the classification of the pixels.No matter what the image size is,the size of the obtained similarity matrix is smaller than 256×256.Experimental results on the Berkeley segmentation dataset and benchmark show that the novel method is effective.
出处 《西安邮电学院学报》 2012年第1期52-57,共6页 Journal of Xi'an Institute of Posts and Telecommunications
基金 国家自然科学基金(61102095 61105064) 陕西省教育厅科研计划项目(11JK1008 2010JK835 2010JK837)
关键词 图像分割 谱聚类 灰度空间紧致性 相似性矩阵 image segmentation spectral clustering gray spatial compactness similarity matrix
  • 相关文献

参考文献18

  • 1Chung F R K.Spectral Graph Theory[M].Providence:American Mathematical Society,1997:227-275.
  • 2Fiedler M.Algebraic connectivity of graphs[J].Czecho-slovak Mathematical Journal,1973,23(98):298-305.
  • 3Shi J,Malik J.Normalized cuts and image segmenta-tion[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2000,22(8):888-905.
  • 4Hendrickson B,Leland R.An improved spectral graphpartitioning algorithm for mapping parallel computa-tions[J].SIAM Journal on Scientific Computing,1995,16(2):452-469.
  • 5Hagen L,Kahng A B.New spectral methods for ratiocut partitioning and clustering[J].IEEE TransactionsComputer-Aided Design,1992,11(9):1074-1085.
  • 6Dhillon I S.Co-clustering documents and words usingbipartite spectral graph partitioning[C] //Proceedingsof the Seventh ACM SIGKDD International Conferenceon Knowledge Discovery and Data Mining(KDD),San Francisco,California,USA.2001:269-274.
  • 7Fowlkes C,Belongie S,Chung F,et al.Spectral group-ing using the Nystrm method[J].IEEE Transactions onPattern Analysis and Machine Intelligence.2004,26(2):214-225.
  • 8Zhao Feng,Jiao Licheng,Liu Hanqiang,et al.Spec-tral Clustering with Eigenvector Selection based on En-tropy Ranking[J].Neurocomputing,2010,73(10/11/12):1704-1717.
  • 9赵凤,焦李成,刘汉强,公茂果.半监督谱聚类特征向量选择算法[J].模式识别与人工智能,2011,24(1):48-56. 被引量:29
  • 10Hebert P A,Macaire L.Spatial-color pixel classifica-tion by spectral clustering for color image segmentation[C] //Proceedings of the 3rd IEEE International Con-ference on Information and Communication Technolo-gies:From Theory to Applications,Damascus(Syri-a),2008:1-5.

二级参考文献85

共引文献71

同被引文献78

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部