期刊文献+

基于SIFT特征的目标多自由度mean-shift跟踪算法 被引量:22

Multi-degree-of-freedom mean-shift tracking algorithm based on SIFT feature
原文传递
导出
摘要 传统的mean-shift跟踪算法不能跟踪目标的旋转、缩放运动,且常常因此造成定位不准.鉴于此,将尺度不变特征变换(SIFT)特征检测融入到mean-shift跟踪过程,提出SIFT特征点的尺度变化与目标的尺度变化成正比,特征点主方向变化与目标旋转角度一致,给出了基于SIFT特征的自适应目标尺度、方向计算方法,且利用带方向、可变带宽的椭圆核改进传统的mean-shift跟踪方法.实验表明,该算法能够较好地跟踪目标的旋转、缩放运动,定位也更准确. Traditional method can't follow the scale and orientation change of the object, which usually causes inaccurate localization. Therefore, this paper combines SIFt(scale invariant feature transform) feature detecting with the mean-shift tracking method, which proposes that the scale change of the SIFT keypoint is proportional to that of the object, and the dominant direction change of the SIFT keypoint is the same as that of the object. The algorithm for adaptively constructing the scale and the orientation information from SIFT features of the object is presented. And a variable-bandwidth and orientation ellipse kernel is used to improve the traditional mean-shift method. The experimental results show that the proposed algorithm provides good tracking of the scale and orientation change of the object, and the localization is more accurate.
出处 《控制与决策》 EI CSCD 北大核心 2012年第3期399-402,407,共5页 Control and Decision
基金 江苏省科技支撑计划项目(BE2009667) 江苏省自然科学基金项目(BK2010366) 中兴通讯高校合作基金项目
关键词 尺度不变特征变换 均值漂移 特征点 尺度空间 目标跟踪 scale invariant feature transform mean-shift keypoint scale space object tracking
  • 相关文献

参考文献13

  • 1Fukunaga K, Hostetler L. The estimation of thegradient of a density-function with applications in patternrecognition[J]. IEEE Trans on Information Theory, 1975,21(1): 32-40.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 3Collins R T. Mean-shift blob tracking through scale space[C]. Proc of IEEE Computer Society Conf on Computer Vision and Pattern Recognition. Madison: IEEE Press, 2003:234-240.
  • 4Qi S M, Huang X W. Hand tracking and gesture gecogniton by anisotropic kernel mean shift[C]. Proc of Int Conf on Neural Networks and Signal Processing. Zhenjang: IEEE Press, 2008: 581-585.
  • 5贾静平,柴艳妹,赵荣椿.一种健壮的目标多自由度Mean Shift序列图像跟踪算法[J].中国图象图形学报,2006,11(5):707-713. 被引量:10
  • 6胡铟,杨静宇.基于分块颜色直方图的MeanShift跟踪算法[J].系统仿真学报,2009,21(10):2936-2939. 被引量:22
  • 7彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 8Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Int J of Computer Vision, 2004, 60(2): 91- 110.
  • 9Schwind P, Suri S, Reinartz P. Applicability of the SIFT operator to geometric SAR image registration[J]. Int J of Remote Sensing, 2010, 31(8): 1959-1980.
  • 10Mehrotra H, Majhi B, Gupta P. Robust iris indexing scheme using geometric hashing of SIFT keypoints[J]. J of Network and Computer Applications, 2010, 33(3): 300-313.

二级参考文献34

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2贾静平,柴艳妹,赵荣椿.一种健壮的目标多自由度Mean Shift序列图像跟踪算法[J].中国图象图形学报,2006,11(5):707-713. 被引量:10
  • 3曾鹏鑫,陈鹏,朱琳琳,徐心和.基于目标运动模型的跟踪方法[J].系统仿真学报,2006,18(12):3491-3494. 被引量:9
  • 4K Fukunaga, L D Hostetler. The estimation of the gradient of a density function, with applications in pattern recognition [J]. IEEE Trans. Information Theory (S0018-9448), 1975, 21(1): 32-40.
  • 5Yizong Cheng. Mean Shift, Mode Seeking, and Clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1995, 17(8): 790-799.
  • 6Comaniciu D, Ramesh V, Meet P. Real-Time Tracking of Non-Rigid Objects using Mean Shift. In: Wemer B, ed. [C]//IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton, USA: Printing House, 2000: 142-149.
  • 7Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking [J]. IEEE Transactions on Pattera AnaLysis aad Machine Intelligence(S0162-8828), 2003, 25(5): 564-577.
  • 8Robert Collins. Mean-shift Blob Tracking through Scale Space [C]// Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, 2003. USA: IEEE, 2003, 2: 234-240.
  • 9[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 10[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.

共引文献260

同被引文献210

引证文献22

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部