期刊文献+

利用复合导数的边缘检测新算法 被引量:4

Novel edge detection algorithm using a composite derivative
原文传递
导出
摘要 图像是人类获取和交换信息的主要来源。图像的边缘是图像最基本也是最重要的特征之一。图像边缘检测是计算机视觉和图像处理领域的经典研究课题。提出由分数阶次微积分组合而成的复合导数概念,并在该复合导数的基础上提出一种边缘检测新方法。通过实验验证了新算法的有效性,展现了新算子在检测精准度与抗噪性两方面的特点。最后,对新算子与两种经典算子Canny和CRONE进行了定性和定量的分析和比较。通过比较,新算法的优越性体现在边缘定位准确,在很好地抑制虚假边缘的同时能够检测出精细的真实边缘。 Images are the main source through which humans acquire and exchange information. Edges are one of the most fundamental and important feature of image. Edge detection is a classic research problem of computer vision and image processing. In this paper we present a new edge detection operator based on a composite derivative, which is realized by the combination of fractional differentiation and integration. The features of the new operator, in terms of detection accuracy and noise immunity, are demonstrated through experiments, and the experimental results verify the effectiveness of the new operator. Finally, qualitative and quantitative comparisons of the new operator with two classical operators, Canny and CRONE, are performed. The comparisons show the superiority of the new algorithm, which is reflected in the abilities of accurate edge localization and good suppression of false edges while still being able to detect fine true edges.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第3期393-401,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(61074161 61034005) 教育部博士学科点专项科研基金项目(20103218120014) 2009年江苏高校优秀科技创新团队资助项目(2009-3) 南京航空航天大学引进人才科研启动基金项目(S0938-032) 南京航空航天大学基本科研业务费专项科研项目(NS2010090)
关键词 图像处理 边缘检测 分数阶次微积分 检测精准度 抗噪性 定性和定量分析和比较 image processing edge detection fractional differentiation and integration detection accuracy noiseimmunity qualitative and quantitative comparisons.
  • 相关文献

参考文献15

  • 1雷丽珍.数字图像边缘检测方法的探讨[J].测绘通报,2006(3):40-42. 被引量:72
  • 2Marr D, Hildreth E. Theory of edge detection [ J ]. Proceedings of the Royal Society of London. Series B, 1980, 207 (1167 ) : 187-217.
  • 3Canny J F. A computational approach to edge detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8:679-698.
  • 4Didier D. On optimal linear filtering for edge detection [ J ]. IEEE Transactions on Image Processing, 2002, 11 ( 7 ) : 728 -737.
  • 5Shen J, Castan S. An optimal linear operator for step edge detection [ J]. CVGIP: Graphical Models and Image Processing, 1992, 54 (2) :11:2-113.
  • 6蒲亦菲.分数阶微积分在现代信号分析与处理中的应用的研究[D].四川:四川大学,2006.
  • 7Mathieu B, Melchior P, Oustaloup A, et al. Fractional differentiation for edge detection [ J ]. Signal Processing, 2003, 83 (3) :2421-2432.
  • 8Ye Y, Tayebi A, Liu X. All-pass filtering in iterative learning control [ J ]. Automatica (0005-1098), 2009, 45 ( 1 ) : 257- 264.
  • 9Bohannan G W. Analog realization of a fractional control element revisited [ EB/OL]. ( 2002-10-27 ) [ 2011-05-01 ]. http://mechatronics, ece. usu. edu/foc.
  • 10Abi Zeid Daou R, Francis C, Moreau X. Synthesis and implementation of non-integer integrators using RLC devices [ J ]. International Journal of Electronics, 2009, 96(12) :1207-1223.

二级参考文献2

共引文献71

同被引文献55

引证文献4

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部