期刊文献+

基于支持向量机模型的水质评价研究 被引量:13

Assessment of Water Quality Based on Support Vector Machine Model
下载PDF
导出
摘要 将支持向量机方法应用到水质评价中,建立了RBF核函数支持向量机评价模型。根据石头口门水库水质特征,选择溶解氧、化学需氧量、高锰酸盐指数等五项指标作为输入因子进行评价,并与综合水质评价法、模糊综合评价法比较。研究结果表明石头口门水库主要为Ⅱ类和Ⅲ类水,呈汛期较差、非汛期较好的变化规律。通过实例验证,说明支持向量机方法能够较好的解决分类评价问题,评价结果良好,符合客观事实,具有很好的研究价值和推广前景。 In this paper,the RBF kernel support vector machine is built to assess water quality.According to the study on surface water quality characteristics in shitoukoumen reservoir,the DO,COD,CODMn and other five factors are selected as quality evaluation factors.The results are compared with those of the comprehensive water quality assessment method and fuzzy evaluation method.The results show that the type of water is mainly Ⅱ and Ⅲ in shitoukoumen reservoir,and is poor in flood season,while a good variation in non-flood season.Through the example confirmation,it is explained that the support vector machines method can solute the classification appraisal question well,conforms to the fact,and has very good research value and promotion prospect.
出处 《节水灌溉》 北大核心 2012年第2期57-59,63,共4页 Water Saving Irrigation
基金 国家自然科学基金资助项目(41072171)
关键词 支持向量机 核函数 水质评价 石头口门水库 support vector machine; kernel function; water quality assessment; Shitoukou-men reservoir
  • 相关文献

参考文献10

  • 1柳回春,马树元.支持向量机的研究现状[J].中国图象图形学报(A辑),2002,7(6):618-623. 被引量:64
  • 2朱杰,吴树芳,王妍,刘永立.支持向量机研究现状[J].大众科技,2009,11(5):88-89. 被引量:5
  • 3徐红敏,杨天行.基于支持向量机分类算法的湖泊水质评价研究[J].吉林大学学报(地球科学版),2006,36(4):570-573. 被引量:23
  • 4Gunn S R. Support Vector Machines for Classification and Regression[D]. England: Univer sity of Southampton, 1988.
  • 5Vapnik V N. The nature of statistical learning theory[M]. Berlin, Springer-VerIag, 1995.
  • 6Baccarini I. M R, Silva V V R, Menezes B R, et al. SVM practical industrial application for mechanial faults diagnosetic[J]. Expert Systems with Applications,2011,38(6):6 980-6 984.
  • 7Sun A, l.im E P, I.iu Y. On strategies for imbalanced text clas sification using SVM: A corn parative study[J]. Decision Support Systems,2009,48(1):191-201.
  • 8Yoon Heesung, Jun Seong-Chun, Hyun Yunjung, et al. A corn parative study of artificial neural networks and sup--port vector machines for predicting groundwater levels in a coastal aquifer [J]. Journal of Hydrology,201 1,396(1 2) : 128-138.
  • 9武同正.支持向越机在湖泊富营养化评价及水质预测中的应用研究[D].呼和浩特:内蒙古农业大学,2008.
  • 10Wu IK P, Wang S D. Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space [J]. Pattern Recognition, 2009,42(5) : 710-717.

二级参考文献8

共引文献88

同被引文献170

引证文献13

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部