期刊文献+

固体火箭发动机碳基材料喷管热化学烧蚀特性 被引量:13

Carbon-Based Nozzle Thermochemical Erosion Characteristics in Solid Rocket Motors
原文传递
导出
摘要 为了准确预示固体火箭发动机碳基材料喷管的烧蚀率,依据热化学烧蚀理论,建立了喷管传热烧蚀的二维轴对称气-固-热耦合计算模型,计算通过FLUENT壁面化学反应模型完成,无需事先假设烧蚀控制机制。针对70-lb BATES发动机喷管进行了烧蚀计算,研究了推进剂配方、氧化性组分、燃烧室压强对喷管烧蚀的影响。结果表明:烧蚀率计算值与试验测试值吻合较好;烧蚀率分布遵循喷管内壁热流密度分布规律,在喉部上游入口处达到峰值;烧蚀率随推进剂Al含量增加而降低,随燃烧室压强升高而近似正比例增大;H2O是决定烧蚀的主要氧化性组分。 Based on the thermochemical erosion theory, a two-dimensional axisymmetric, coupled gas-solid-thermal numerical framework was established to predict the carbon-based nozzle erosion in solid rocket motors. Numerical simulations were carried out using the Wall Surface Reaction model of the commercial code FLUENT and the assumption whether the erosion process was chemical kinetics or diffusion controlled was not needed. The method was introduced to simulate the 70-1b BATES motor nozzle erosion and examine the effects of propellant composition, oxidizing species and chamber pressure. The calculated results agree well with experimental data. The erosion rate follows the trend exhibited by the heat flux distribution, and peaks slightly upstream of the throat. The erosion rate decreases with increasing aluminum content and increases almost linearly with chamber pressure. H20 is the dominant oxidizing species in dictating nozzle erosion.
出处 《推进技术》 EI CAS CSCD 北大核心 2012年第1期93-97,共5页 Journal of Propulsion Technology
关键词 固体火箭发动机 喷管 烧蚀 数值仿真 Solid rocket motor Nozzle Erosion Numerical simulation
  • 相关文献

参考文献13

  • 1Thakre P, Yang V. Chemical Erosion of Carbon-Carbon/ Graphite Nozzles in Solid-Propellant Rocket Motors [ J]. Journal of Propulsion and Power, 2008, 24 (4) : 822-833.
  • 2Delaney L J, Eagleton L C, Jones W H. A Semi-Quanti-tative Prediction of the Erosion of Graphite Nozzle Inserts [J]. AIAA Journal, 1964, 2(8) : 1428-1433.
  • 3McDonald A J, Hedman P O. Erosion of Graphite in Solid Propellant Combustion Gases and Effects on Heat Transfer[J]. A1AA Journal, 1965, 3(7) : 1250-1257.
  • 4Mayberry J L, Kordig J W, Zeamer R L, et al. Correlation of Graphite Nozzle Throat Erosion in Solid Rocket Motors[ J ]. AIAA Journal, 1968, 6 ( 11 ) : 2222-2224.
  • 5Kuo K K, Keswani S T. A Comprehensive Theoretical Model for Carbon-Carbon Composite Nozzle Recession [ J]. Combustion Science and Technology, 1985, 42 (3- 4) : 145-164.
  • 6Keswani S T, Kuo K K. Validation of an Aerothermo Chemical Model for Graphite Nozzle Recession and Heat- Transfer Process [ J]. Combustion Science and Technology, 1986, 47(3-4) : 177-192.
  • 7Aeharya R, Kuo K K. Effect of Pressure and Propellant Composition on Graphite Rocket Nozzle Erosion Rate [ J]. Journal of Propulsion and Power, 2007, 23(6) : 1242-1254.
  • 8Acharya R, Kuo K K. Numerical Simulation of Graphite Nozzle Erosion with Parametric Analysis[ R]. AIAA 2010- 6846.
  • 9Geisler R L. The Relationship Between Solid-Propellant Formulation Variables and Nozzle Recession Rates [ C ]. Lancaster:JANNAF Rocket Nozzle Technology Subcommittee Meeting, 1978.
  • 10Geisler R L, Beckman C W. The History of the BATES Motors at the Air Force Rocket Propulsion Laboratory [R]. A1AA 9S-3981.

二级参考文献15

共引文献9

同被引文献96

引证文献13

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部