摘要
环R称为左广义morphic的,如果对任意的a∈R,存在b∈R使得l(a)≌R/Rb,其中l(a)表示a在R中的左零化子.右广义morphic环可以类似的定义.证明了右广义morphic环R是左拟morphic环当且仅当R是左广义morphic右P-内射的.此外通过平凡扩张给出了广义morphic环一些新的例子.
A ring R is called left generalized morphic ring, if for every element a E R, l(a) ≌R/Rb for some b R, where l(a) denotes the left annihilator of a in R. Right generalized morphie rings can be defined analogously. It is proved that a right generalized morphic ring R is left quasi-morphic if and only if it is left generalized morphic and right P-injeetive. Moreover, the paper provided new examples of generalized morphic rings by trivial extension.
出处
《杭州师范大学学报(自然科学版)》
CAS
2012年第2期169-173,共5页
Journal of Hangzhou Normal University(Natural Science Edition)
基金
安徽省教育厅重点科研项目(KJ2010A126)
安徽师范大学校专项基金项目(2008xzx10)