期刊文献+

区间不确定性需求下的D-LFLP模型及算法 被引量:3

Model and algorithm for discrete logistics facility location problem under interval uncertainty demand
下载PDF
导出
摘要 考虑物流网络需求的不确定性,运用区间分析理念以区间数度量不确定性变量与参数,建立区间需求模式下的物流网络设计的混合整数规划模型,定义风险系数与最大约束偏差,对模型进行目标函数与约束条件的确定性转化,设计问题求解的区间递阶优化遗传算法,对不同情景状态下目标函数的区间最优解与节点决策方案进行运算。算例测试表明该算法可操作性更强,求解结果具有区间最优解与情景决策的优越性。 In this paper, the uncertainty of logistics demand network is considered. The interval analysis idea is applied to measure uncertain variables and parameters with interval numbers. The mixed integer programming model for logistics network design under interval demand mode is built. The risk coefficient and the maximum constraint deviation are defined to transform the objective function and constraints into certainty. A interval hierarchical optimization genetic algorithm is designed to solve the problem, and to calculate interval optimal solution and node decision-making scheme for objective function under different scenario states. It is shown by a tested example that the operability of the algorithm is more stronger and the solution result has superiority of interval optimal solution and scenario decision.
出处 《计算机工程与应用》 CSCD 2012年第8期12-15,72,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.70671108) 湖南省科技计划项目(No.2010FJ6016)
关键词 物流网络设计 不确定性 混合整数规划 区间变量 遗传算法 logistics network design uncertainty mixed integer programming interval variable genetic algorithm
  • 相关文献

参考文献20

二级参考文献128

共引文献280

同被引文献39

  • 1张勇,巩敦卫,张芹英,蒋余庆.带区间约束不确定优化问题的确定化描述[J].系统工程理论与实践,2009,29(2):127-133. 被引量:6
  • 2Li D Y,Cheng D W,Shi X M,et al. Uncertainty reasoning based on cloud models in controllers[J]. Computers and Mathematics with Applications, 1998, 35 (3): 99- 123.
  • 3Jouko Lampinen, Aki Vehtari. Bayesian approach for neural networks-review and case studies [J]. Neural Networks, 2001,14 (3) : 257-274.
  • 4John W,Jayawardena A W,Fernando T M K G. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches[J]. Journal of Hydrology, 2002,265 (1) : 225-245.
  • 5Jonathan G. Campbell, Ridolfi L. Nonlinear analysis of river flow time sequences [J]. Water Resources Research, 1997,33(6): 1353-1367.
  • 6Abdulla. A, Elishakoff I. Convex models of uncertainty in applied mechanics [M]. Amsterdam.. Elsevier Science, 1990.
  • 7Zahi S, Thomas Martin, Lian H D, et al. Interval static displacement analysis for structures with interval parameters[J]. International Journal for Numerical Methods in Engineering, 2002,53 (2) : 393-407.
  • 8“纺织之光”会议:重视基础研究加大成果推广[EB/OL].http://www. ttmn. com/news/details/670025,2012-04-12.
  • 9Jiang C, Han X, Liu G R, et al. A nonlinear interval number programming method for uncertain optimization problems[J]. European Journal of Operational Research,2008,188(1) :1-13.
  • 10Kasperski A, Zielinski P. An approximation algorithm for interval data minmax regret combinatorial optimization problems [J]. Information Processing Letters, 2006,97(5) : 177-180.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部