期刊文献+

一种改进的粒子滤波算法及其性能分析 被引量:4

Improved PF algorithm and performance analysis
下载PDF
导出
摘要 针对非线性、非高斯系统状态的在线估计问题,提出了一种改进的粒子滤波算法。该算法采用Unscented卡尔曼滤波器(UKF)产生系统的状态估计,并在量测更新过程中加入衰减记忆因子,消弱滤波器对历史信息的依赖,增强当前量测信息对滤波器的修正作用,从而产生一个优选的建议分布函数,较好地抑制了粒子退化问题。理论分析和实验表明:引入记忆衰减因子的粒子滤波,即衰减记忆无味粒子滤波(MAUPF)的性能明显优于标准的粒子滤波以及Unscented粒子滤波。 A new particle filter is proposed for the on-line estimation problem of non-Gauss nonlinear systems. In order to weaken the effect of historical information and enhance the effect of up-to-date measurement, it introduces attenuation memory factor for generat- ing the important density function based on the Unscented Kalman filter(UKF) for a better performance in inhibiting the particle degradation problems in the new algorithm. As a result, the theoretical analysis and experimental results show that the new particle filter outperforms obviously superior to the standard particle filter and Unscented particle filter.
作者 曹洁 李伟
出处 《计算机工程与应用》 CSCD 2012年第8期144-147,共4页 Computer Engineering and Applications
基金 甘肃省自然科技基金(No.1010RJZA046) 甘肃省教育厅硕导基金项目(No.0914ZTB003) 甘肃省财政厅项目(No.0914ZTB148)
关键词 状态估计 粒子滤波器 记忆衰减因子 重要性概率密度函数 state estimation particle filter attenuation memory factor important density function,~ ~ ,~ .~, ]
  • 相关文献

参考文献14

  • 1Kitagawa G.Monte Carlo filter and smoother for non Gaussian nonlinear state space models[J].Joumal of Computational and Graphical Statistics, 1996,5 : 1-25.
  • 2Avitzour D.A stochastic simulation Bayesian approach to multi- target tracking[J],IEE Proc Radar, Sonar and Navigation, 1995.
  • 3Isard M, Blake A.Contour tracking by stochastic propagation of conditional density[C]//European Conference on Computer Vision, 1996: 343-356.
  • 4van der Merwe R, Doucet A, de Freitas N, et al.The unscented particle filter, CUED/F-INFENG/TR 380[R].Engineering Department, Cambridge University, 2000.
  • 5Julier S J, Uhlmann J K.Unseented filtering and nonlinear estimation[J].Proeeedings of the IEEE,2004,92(3):401-422.
  • 6Wan E A, Merwe R.The unscented Kalman filter for nonlinear estimation[C]//Prnceedings of International Symposium on Adaptive Systems for Signal Processing, Communications and Contro l, Alberta, Canada, 2000: 153 - 158.
  • 7Gordon N J, Salmond D J, Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceed- ings on Radar and Signal Processing, 1993,140(2) : 107-113.
  • 8Gustafsson F.Particle filters for positioning, navigation, and tracking[J].IEEE Transactions on Signal Processing, 2002, 50 (2): 425-437.
  • 9Vo B N,Vo B T, Singh S.Sequential Monte Carlo methods for static parameter estimation in random set models[C]//SSNIP, 2004:313-318.
  • 10Julier S J,Uhlman J K.A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans on Automatic Control, 2000,45 (3) : 477-482.

同被引文献27

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部