期刊文献+

基于最大置信度的多目标检测算法 被引量:3

Detection of Multi-target Based on Maximum Confidence
下载PDF
导出
摘要 针对混合运动模式下目标数量及目标运动速度范围等多项先验信息缺乏状况下的复杂航迹起始问题,提出一种基于最大置信度的多目标检测算法。该算法借鉴动态规划技术中的能量积累思想,并充分利用了传感器信号强度信息。在粗起始阶段利用扩展搜索算法生成候选航迹,并利用模型粗匹配的方法将候选航迹大致分为直线运动及曲线运动两种类型。在航迹确认阶段,采用基于信号强度信息的概率多假设跟踪算法,通过计算最优状态估计值获得量测点属于某一目标的最大置信度,并依据最大置信度确认目标量测。仿真实验结果表明,该方法实时性强,不仅能对多目标航迹准确起始,也可以有效避免概率多假设跟踪算法由于初值质量差而导致的错误跟踪现象。 A multiple targets detection algorithm based on maximum confidence is proposed to solve complicated multiple targets track initiation problem in the mode of hybrid motion with insufficient prior information,such as target number and target velocity interval.This algorithm effectively utilizes the signal intensity information of sensor depending on the principal of energy accumulation of dynamic programming.During the period of rough initiation,an extended search approach is utilized to generate candidate tracks,and these tracks are divided into rectilinear motion mode and curvilinear motion mode respectively according to model matching.Furthermore,the probabilistic multi-hypothesis tracking algorithm based on signal intensity information is utilized to obtain the maximum confidence through calculating optimal state estimation,and the target measurement is confirmed finally based on the maximum confidence in the period of track confirming.Simulation results show that the proposed algorithm has the capabilities of high real-time and accurate initiation for multi-target tracks.Moreover, it avoids the error tracking problem due to poor initial value in probabilistic multi-hypothesis tracking algorithm.
出处 《信号处理》 CSCD 北大核心 2012年第1期39-46,共8页 Journal of Signal Processing
基金 国家自然科学基金(61175027)的资助
关键词 最大置信度 扩展搜索 概率多假设跟踪 多目标 maximum confidence extended search probabilistic multi-hypothesis tracking multiple targets
  • 相关文献

参考文献12

二级参考文献45

共引文献66

同被引文献27

  • 1汤金平 时银水 王学青.一种基于断续点迹的雷达网航迹起始方法研究.防空兵指挥学院学报,2008,26(5):64-67.
  • 2CLOUQUEUR T,PHIPATANASUPHORN V,RA-MANATHAN P,et al.Sensor deployment strategyfor detection of targets traversing a region[J].MobileNetworks and Applications,2003,8(4):453-461.
  • 3TENNEY R R,SANDELL N R.Detection with dis-tributed sensors[J].IEEE Transactions on Aerospaceand Electronic Systems,1981,17(4):501-510.
  • 4CHAIR Z,VARSHNEY P K.Optimal data fusion inmultiple sensor detection systems[J].IEEE Transac-tions on Aerospace and Electronic Systems,1986,22(1):98-101.
  • 5VISWANATHAN R,VARSHNEY P K.Distributeddetection with multiple sensors:I fundamentals[J].Proceedings of the IEEE,1997,85(1):54-63.
  • 6NIU Ruixin,VARSHNEY P K,CHENG Qi.Distrib-uted detection in a large wireless sensor network[J].Information Fusion,2006,7(4):380-394.
  • 7KATENKA N,LEVINA E,MICHAILIDIS G.Localvote decision fusion for target detection in wirelesssensor networks[J].IEEE Transactions on SignalProcessing,2008,56(1):329-338.
  • 8KIEU-XUAN T,KOO I.A collaborative event detec-tion scheme using fuzzy logic in clustered wireless sen-sor networks[J].International Journal of Electronicsand Communications,2011,65(5):485-488.
  • 9WANG Yun,LUN Zhengdong.Intrusion detection inak-Gaussian distributed wireless sensor network[J].Journal of Parallel and Distributed Computing,2011,71(12):1598-1607.
  • 10Wang Jian, Target initiation of high frequency surface wave over-the-horizon radar based on information entro- py theory[ C]//2011 IEEE CIE International Confer- ence on Radar (Radar) , Hefei, China: 138-140.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部