期刊文献+

高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究 被引量:2

Key issues for high-efficiency silicon thin film solar cells prepared by RF-PECVD under high-pressure-depletion conditions
原文传递
导出
摘要 报道了采用高压射频等离子体增强化学气相沉积(RF-PECVD)制备高效率单结微晶硅电池和非晶硅/微晶硅叠层电池时几个关键问题的研究结果,主要包括:1)器件质量级本征微晶硅材料工艺窗口的确定及其结构和光电性能表征;2)孵化层的形成机理以及减小孵化层的有效方法;3)氢稀释调制技术对本征层晶化率分布及其对提高电池性能的作用;4)高电导、高晶化率的微晶硅p型窗口层材料的获得,及其对减小微晶硅电池p/i界面孵化层厚度和提高电池性能的作用等.在解决上述问题的基础上,采用高压RF-PECVD制备的单结微晶硅电池效率达8.16%,非晶硅/微晶硅叠层电池效率11.61%. Our recent work on deposition and characterization of hydrogenated microcrystalline silicon (uc-Si:H) thin films and silicon thin film solar cells prepared by RF-PECVD under high-pressure-depletion conditions is summarized in this paper. Several key issues are studied in detail: 1) process windows for device-quality uc-Si:H thin films, 2) formation mechanism of amorphous silicon incubation layer and the effective methods to reduce the incubation layer thickness, 3) modification of crystalline fraction volume of intrinsic uc-Si:H layers and its influence on the device performance of uc-Si:H solar cells, 4) deposition of high conductive p-type I.tc-Si:H window layers with high crystalline fraction volume, and the influence of p-layer on the device performance. After solving the above key issues, a high efficiency of 8.16% is obtained for uc-Si:H sing-junction solar cell with intrinsic layer prepared by RF-PECVD under high-pressure-depletion conditions. When it is used as bottom cell in a-Si:H/uc-Si:H tandem solar cell, the efficiency of tandem cell reaches 11.61%.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第5期493-498,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2011CBA00705,2011CBA00706,2011CBA00707) 国家高技术研究发展规划(批准号:2009AA050602) 江苏省微纳生物医疗器械设计与制造重点实验室开放基金(批准号:JSNBI201001)资助的课题~~
关键词 高压射频等离子体增强化学气相沉积 微晶硅 孵化层 氢稀释调制 high-pressure RF-PECVD, hydrogenated microcrystalline silicon, incubation layer, hydrogen dilution profiling
  • 相关文献

参考文献19

  • 1Shan A V,Schade H,Vanecek M,Meier J,Vallat-Sauvain E, Wyrsch N,Kroll U,Droz C,Bailat J 2004 Prog.Photovolt.Res. Appl.12 113.
  • 2Mai Y,Klein S,Geng X,Finger F 2004 Appl.Phys.Lett.85 2839.
  • 3Li H,Franken R H,Stolk R L,van der Werf C H M,Schuttauf J A, Rath J K,Schropp R E I 2007 Mater.Res.Soc.Symp.Proc.989 A18.3.
  • 4Nasuno Y,Kondo M,Matsuda A 2001 Jpn.J.Appl.Phys.40 L303.
  • 5Sansonnens L,Schmidt H,Howling A,Hollenstein Ch,Ellert Ch, Buechel A 2006 J.Vac.Sci.Technol.A 24 1425.
  • 6Hrunski H,Scheib M,Mertz M,Schroeder B 2009 Thin Solid Films 517 3370.
  • 7Guo L H,Kondo M,Fukawa M,Saitoh K,Matsuda A,1998 Jpn. J.Appl.Phys.37 L1116.
  • 8http://www.appliedmaterials.com,2011.12.
  • 9http://www.pv.kaneka.co.jp,2011.12.
  • 10http://www.ulvac-solar.com,2011.12.

二级参考文献25

  • 1侯国付,薛俊明,郭群超,孙建,赵颖,耿新华,李乙钢.Formation mechanism of incubation layers in the initial stage of microcrystalline silicon growth by PECVD[J].Chinese Physics B,2007,16(2):553-557. 被引量:8
  • 2Matsuda A 1983 J. Non-crystalline Solids 59&60 767
  • 3Guo L, Lin R 2000 Thin Solid Films 376 249
  • 4Guo L, Kondo M, Fukawa M, Saltoh K, Matsuda A 1998 Jpn. J.Appl. Phys. 37 L1116
  • 5Matsui T, Matsuda A, Kondo M 2004 Mat. Res.Soc.Symp.Proc. 808 A8.1
  • 6Rech B, Roschek T, Repmann T, Muller J, Schmitz R,Appenzeller W 2003 Thin Solid Films 427 157
  • 7Roschek T, Repmann T, Muller J, Rech B, Wegner H 2003 J.Vac. Sci. Technol. A 20 492
  • 8Yan B J, Yue G Z, Banerjee Z, Yang J,Guha S 2004 Mat. Res.Soc. Symp. Proc. 808 A9.41
  • 9Nasuno Y, Kondo M, Matsuda A 2001 Appl. Phys.Lett. 78 2330
  • 10Kroll U, Meier J, Torres P, Pohl J, Shah A 1998 J. Non-Crystalline Solids 227&230 68

共引文献19

同被引文献31

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部