期刊文献+

综合一致性质量控制方法及其在气温中的应用 被引量:39

Comprehensive Consistency Method of Data Quality Controlling with Its Application to Daily Temperature
下载PDF
导出
摘要 由于历史逐日气温资料在气候分析、气候变化研究中的基础性作用,其数据质量状况日益受到关注。利用邻近参考站日平均气温、最高气温和最低气温资料及线性回归模型,设计了基于线性回归数据估计方法的质量检查算法,该算法同时包含了时间一致性和空间一致性两种检查方法。通过数据植入误差检测以及与单一空间回归检查方法的比较,该算法的错误数据检测性能较高,可检测出与正确日气温数据相差3℃左右的可疑值。在该算法的基础上,研制了综合一致性数据质量控制方法,该方法具有以下特点:第一类错误发生率较低;保持了时间、内部和空间一致性的逻辑关系;参考了天气因素。因此,与一般的数据质量控制方法相比,综合一致性数据质量控制方法具有较高的错误数据检测性能。经过在华中区域湖北、湖南和河南三省251个站1961—2009年逐日气温资料的应用,取得了较好效果。各要素奇异值检出率平均气温为0.001%,最高气温为0.05%,最低气温为0.04%。 Due to the historical daily temperature data playing an important role in climate analysis and climate change research,the data quality is attached more importance.At present the daily temperature data are checked for quality control using the traditional methods in China,lacking a systematic and comprehensive method to pick up the outliers data hidden in the historical temperature data.These error data in the daily temperature affect data application,therefore,it's necessary to carry out the research of new quality control method. Using linear regression model and historical daily temperature(average temperature,maximum temperature and minimum temperature) data of the neighbouring stations in the same period,a quality check algorithm based on linear regression estimation method is designed,which includes both time consistency check and spatial consistency check in quality control of meteorological observational data.To further enhance the detection performance of data quality check,a comprehensive consistency check method is developed based on this algorithm,which adds internal consistency check that refers the variation of related meteorological elements such as daily temperature(average temperature,maximum temperature and minimum temperature),precipitation and sunshine duration to check data quality. Using the data seeded errors check test and compared with spatial regression test,the method of linear regression data quality control algorithm has higher error data check performance.The algorithm can detect suspicious data that is about 3℃difference from the correct value on the temperature. Through data quality control practices and analysis on historical data,the comprehensive consistency check method has the following advantages:The flagged rates of TypeⅠerrors are lower,thus reducing false detection rate of that the correct data flagged as error data;the logical relationship are kept with time consistency,internal consistency,and spatial consistency in data quality control process,and these three methods of checking the consistency of data quality are as a whole at the same time;the weather factors are referred,thus reducing the impact on data quality of small-scale weather phenomena which can flag data incorrectly.Therefore,the method of comprehensive consistency data quality control,which compared to the traditional data quality control method,has higher error detection performance. The algorithm achieves good progress on the applications of daily temperature data from 251 weather stations from 1961 to 2009 in Hubei,Hunan and Henan provinces.Detection of outliers in the average temperature is 0.001%,that in the maximum temperature is 0.05%,and that in the minimum temperature is 0.04%.
作者 王海军 刘莹
出处 《应用气象学报》 CSCD 北大核心 2012年第1期69-76,共8页 Journal of Applied Meteorological Science
基金 气候变化专项"华中区域气候变化评估报告编制"(CCFS-10-04) 湖北省气象局基金课题(2009Y02)
关键词 逐日气温 线性回归 质量控制 综合一致性 daily temperature linear regression data quality control comprehensive consistency
  • 相关文献

参考文献18

二级参考文献106

共引文献500

同被引文献366

引证文献39

二级引证文献331

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部