期刊文献+

基于碳膜的柔性神经微电极阵列加工 被引量:1

Fabrication of Carbon Film-Based Flexible Neural Microelectrode Array
下载PDF
导出
摘要 为了实现长期安全有效的神经电刺激,避免电极腐蚀情况,提出了一种基于热解光刻胶形成碳膜作为导电材料的柔性视网膜神经微电极阵列.首先,通过高温热解图形化的光刻胶形成导电碳膜,然后利用光敏性聚酰亚胺(Durimide 7510)作为基底材料,通过光刻结合转膜、键合和牺牲层腐蚀技术,实现了具有柔性特征的碳膜神经微电极阵列.实验结果显示这种碳膜电极的电荷存储能力达到6.625 mC/cm2,是金电极的12.4倍,显示了良好的电化学稳定性和电荷注入能力,有利于其长期植入和安全有效地工作,可应用于新一代人工视网膜系统的构建. To achieve long-term safe and effective stimulation and to avoid erosion of electrodes, a novel flexible retinal stimulation microelectrode array was developed using pyrolyzed photoresist carbon film as a conducting material in this paper. Firstly, the patterned photoresists were pyrolyzed to produce conduc- ting carbon fihns at high temperature. Then, a photosensitive polyimide (Durimide 7510) was used as the substrate material. By patterning with photolithography techniques, sequentially transferring the carbon film, bonding two insulting layers and etching the sacrifice layer, the flexible carbon film microelec- trode arrays were successfully fabricated. Experimental results show that the charge storage capacity of the carbon film microelectrodes is 6. 625 mC/cm2, which is about 12.4 times greater than that of the gold microelectrodes, indicating that the carbon film microelectrodes have a good electrochemical stability and a large charge injection capability, which is beneficial to their long-term implantation and safe work. This flexible carbon film microelectrode array can he a promising candidate for retinal prosthesis.
出处 《纳米技术与精密工程》 EI CAS CSCD 2012年第2期184-188,共5页 Nanotechnology and Precision Engineering
基金 国家重点基础研究发展计划(973计划)资助项目(2011CB707505) 国家高技术研究发展计划(863计划)资助项目(2009AA04Z326) 国家自然科学基金资助项目(30872629) 上海市自然科学基金资助项目(10ZR1436200)
关键词 柔性微电极 碳膜 电化学稳定性 人工视网膜 flexible microelectrode carbon film electrochemical stability retinal prosthesis
  • 相关文献

参考文献16

  • 1Winter J O, Cogan S F, Rizzo J F. Retinal prostheses: Current challenges and future outlook [J]. Journal of Biomaterials Science : Polymer Edition, 2007, 18 ( 8 ) : 1031-1055.
  • 2Weiiland J D, Humayun M S. Intraocular retinal prosthesis [ J ]. IEEE Engineering in Medicine and Biology Magazine, 2006, 25 (5) : 60-66.
  • 3Suaning G J, Lovell N H, Kwok C Y. Fabrication of platinum spherical electrodes in an intra-ocular prosthesis using high-energy electrical discharge [ J ]. Sensors and Actuators A:Physical, 2003, 108(1/2/3) : 155-161.
  • 4Zhou H B, Li G, Sun X N, et al. Integration of Au nanorods with flexible thin-film microelectrode arrays for improved neural interfaces [ J ]. Journal of Microelectromechan-ical Systems, 2009, 18( 1 ) : 88-96.
  • 5Cogan S F, Troyk P R, Ehrlich J, et al. The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes [J]. Journal of Neural Engineering, 2007, 4(2) : 79-86.
  • 6Janders M, Egert U, Stelzle M, et al. Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications [ C ]// Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Amsterdam, Netherlands, 1997, 1 : 245-247.
  • 7Cogan S F, Guzelian A A, Agnew W F, et al. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation [ J ]. Journal of Neuroscienee Methods, 2004, 137(2): 141-150.
  • 8Navarro X, Krueger T B, Lago N, et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems [ J ]. Journal of the Peripheral Nervous System, 2005, 10(3) : 229-258.
  • 9Zrenner E, Bartz-Sehmidt K U, Benav H, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words [J]. Proceedings of the Royal Society B: Biological Sciences, 2011, 278 ( 1711 ) : 1489-1497.
  • 10Weiland J D, Liu W T, Humayun M S. Retinal prosthesis [ J]. Annual Review of Biomedical Engineering, 2005, 7: 361-401.

二级参考文献8

  • 1Gabay T, Ben-David M, Kalifa I, et al. Electro-chemical and biological properties of carbon nanotube based multielectrode arrays [ J ]. Nanotechnology, 2007, 18 ( 3 ) : 035201.
  • 2Koo K I, Chung H, Yu Y, et al. Fabrication of pyramid shaped three-dimensional 8 × 8 electrodes for artificial retina [J]. Sens Actuators A: Phys , 2006,130/131 : 609-615.
  • 3Paik S J, Park Y. Roughened polysilicon for low impedance microelectrodes in neural probes [ J ]. J Micromech Microeng, 2003, 13: 373-379.
  • 4Bauerdick S, Burkhardt C, Kern D P, et al. Substrate-integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication [ J ]. Biomed Microdevices, 2003, 5 (2) : 93-99.
  • 5Wang K, Fishman H A, Dai H, et al. Neural stimulation with a carbon nanotube microelectrode array [ J ]. Nano Lett, 2006, 6 (9) : 2043-2048.
  • 6Losic D, Shapter J G, Mitchell J G, et al. Fabrication of gold nanorod arrays by templating from porous alumina [ J]. Nanotechnology, 2005, 16(10) : 2275-2281.
  • 7Grasso V, Lambertini V, Ghisellini P, et al. Nanostructuring of a porous alumina matrix for a biomolecular microarray [J]. Nanotechnology, 2006, 17(3) : 795-798.
  • 8Gimsa U, Schreiber U, Habel B, et al. Matching geometry and stimulation parameters of electrodes for deep brain stimulation experiments : Numerical considerations [ J ]. J Neurosci Methods, 2006, 150(2) : 212-227.

共引文献1

同被引文献16

  • 1Teofilo R F, Ceragiol H J, Peterlevitz A C. Improvement of the electrochemical properties of" as-grown" boron-doped polycrystalline diamond electrodes deposited on tungsten wires using ethanol [ J ]. Journal of Solid State Electro- chemistry,2007,11 : 1449-1457.
  • 2Yasuaki E. Diamond electrodes for electrochemical analy- sis[ J]. Journal of Applied Electrochemistry, 2010,40: 1807-1816.
  • 3Suaning G J, Lovell N H, Kwok C Y. Fabrication of plati- num spherical electrodes in an intra-ocular prosthesis u- sing high-energy electrical discharge [ J ]. Sensors and Ac- tuators A :Physical,2003,108 ( 1/2/3 ) : 155-161.
  • 4Snow S, Jacobsen S C, Wells D L, et al. Microfabricated Cylindrical Multielectrodes for Neural Stimulation [ J ]. IEEE Transactions on Biomedical Engineering, 2006, 5 (32) :320-326.
  • 5Thanawala S S,Baird R J,Georgiev D G,et al. Amorphous and crystalline IrO2 thin films as potential stimulation e- lectrede coatings [ J ]. Applied Surface Science, 2008,254 : 5164-5169.
  • 6Yoshida K, Lewinsky I, Nielsen M. Implantation mechanics of tungsten microneedles into peripheral nerve trunks [ J ]. Medical and Biological Engineering and Computing,2007, 45:413-420.
  • 7Wang K,Fishman H A,Dai H J,et al. Neural Stimulation with a Carbon Nanotube Microelectrode Array [ J ]. Nano Letters, 2006,6 ( 9 ) : 2043-2048.
  • 8Hupert M, Muck A, Wang J. Conductive diamond thin- films in electrochemistry[ J]. Diamond and Related Mate- rials ,2003,12 : 1940-1949.
  • 9Halpem J M, Xie S T, Sutton G P, et al. Diamond elec- trodes for neurodynamie studies in Aplysia californica [ J]. Diamond and Related Materials ,2006,15 : 183-187.
  • 10Chan H Y, Aslam D M, Wiler J A, et al. A Novel Dia- mond Microprobe for Neuro-Chemical and-Electrical Re- cording in Neural Prosthesis [ J ]. Journal of microelectro- mechanical systems,2009,18(3) :511-521.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部