期刊文献+

一种求解旅行商问题的迭代改进蚁群优化算法 被引量:7

A kind of iterative improvement based ant colony optimization algorithm for the traveling salesman problem
原文传递
导出
摘要 传统的蚁群优化算法每次都从头开始构造新解,无条件地接收选择的解部件,该策略削弱了算法的局部求精能力。针对该不足,提出了一种求解旅行商问题的迭代改进蚁群优化算法。在构造解的过程中,蚂蚁始终记忆一个完整的解,并且只接受能够改进解的候选城市。使用解的部分重构策略来保持种群的多样性,以避免早熟收敛。仿真结果表明迭代改进蚁群优化算法能在更少的迭代次数内获得更好的解。 Classical ant colony optimization algorithms build solutions by starting with an empty initial solution,and unconditionally accepting selected components.This has become a natural restriction of its intensification ability.To overcome this shortage,an iterative improvement based ant colony optimization algorithm was presented for the traveling salesman problem.In the process of constructing the solution,the ant always memorizes a complete solution;and it adopts a candidate city only when such an adoption can improve the solution.Reconstructing of a partial solution was used to keep the diversity of swarm and avoid premature convergence.Simulation results showed that the proposed algorithm can obtain better solutions within less iteration numbers.
出处 《山东大学学报(工学版)》 CAS 北大核心 2012年第1期6-11,共6页 Journal of Shandong University(Engineering Science)
基金 福建省自然科学基金项目(2008J0316)
关键词 蚁群优化算法 迭代改进 旅行商问题 集中性 多样性 ant colony optimization algorithm iterative improvement traveling salesman problem intensification diversification
  • 相关文献

参考文献20

  • 1COLORNI A,DORIGO M,MANIEZZO V.Distributedoptimization by ant colonies[C]//Processings of the FirstEuropean Conference on Artificial Life.Amsterdam:Elsevier,1992:34-142.
  • 2COLORNI A,DORIGO M,MANIEZZO V.An investi-gation of some properties of an ant algorithm[C]//Pro-cessings of the Parallel Problem Solving from Nature Con-ference.Amsterdam:Elsevier,1992:509-520.
  • 3STTZLE T,HOOS H.Max-min ant system[J].FutureGeneration Computer Systems,2000,16(8):889-914.
  • 4DORIGO M,MANIEZZO V,COLORNI A.The ant sys-tem:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and CyberneticsPart B,1996,26(1):29-41.
  • 5FUELLERER G,DOERNER K F,HARTL R F,et al.Ant colony optimization for the tw o dimensional loadingvehicle routing problem[J].Computers&Operations Re-search,2009,36(3):655-673.
  • 6HERNNDEZ H,BLUM C.Ant colony optimization formulticasting in static w ireless ad-hoc netw orks[J].Sw arm Intelligence,2009,3(2):125-148.
  • 7SOLNON C.Combining two pheromone structures forsolving the car sequencing problem w ith ant colony opti-mization[J].European Journal of Operational Research,2008,191(3):1043-1055.
  • 8SOCHA K,BLUM C.An ant colony optimization algo-rithm for continuous optimization:an application to feed-forw ard neural netw ork training[J].Neural Computing&Applications,2007,16(3):235-248.
  • 9SOCHA K,DORIGO M.Ant colony optimization forcontinuous domains[J].European Journal of OperationalResearch,2008,185(3):1155-1173.
  • 10GAMBARDELLA L M,DORIGO M.Solving symmet-ric and asymmetric TSPs by ant colonies[C]//Process-ings of IEEE International Conference on EvolutionaryComputation.Piscataw ay.NJ:IEEE Press,1996:622-627.

二级参考文献50

  • 1丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法融合的马尔可夫收敛性分析[J].自动化学报,2004,30(4):629-634. 被引量:32
  • 2高尚,韩斌,吴小俊,杨静宇.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,19(11):1286-1289. 被引量:73
  • 3王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 4张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994..
  • 5康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 6Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页
  • 7Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页
  • 8康立山,非数值并行算法.1 模拟退火算法,1997年
  • 9Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm [ A ]. Proc. of the Parallel Problem Solving from Nature Conference ( PPSN' 92) [ C ]. Brussels, Belgium : Elsevier Publishing, 1992,509 - 520.
  • 10Gunes M, Sorges U, Bouazizi I. ARA the ant colony based routing algorithm for MANETs[ A ]. Proceedings International Conference on Parallel Processing Workshops [ C ] . Uuncouver, B C, Canada, 2002 : 79 - 85.

共引文献487

同被引文献76

引证文献7

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部