期刊文献+

QGA-RBF神经网络在矿井瓦斯涌出量预测中的应用 被引量:28

Application of QGA-RBF for Predicting the Amount of Mine Gas Emission
下载PDF
导出
摘要 煤矿的安全事故中有80%以上为瓦斯事故,为了更加准确的预测瓦斯涌出量,使得煤矿安全进一步得到保障,采用足够的具有代表性的瓦斯检测数据作为样本,利用QGA算法优化RBF神经网络的参数,建立了瓦斯涌出量的预测模型,并使用MATLAB进行仿真研究。结果表明,经过优化后的预测模型较单一的RBF网络模型有更好的预测精度,可以为煤矿瓦斯防治提供理论依据。 Safe accidents in coal mine are aroused more than 80 percent by the excess of gas. In order to make gas emission quantity forecasting result more accurate and guarantee the safety of coal mine, detecting sufficient and typical gas data are collected as samples in this paper. The quantum genetic algorithm is adopted to optimize the pa- rameters of Radial Basis Function neural networks, and the forecasting model used for carrying out the gas emission quantity forecasting is established. The simulating result obtained by using Matlab indicates the optimized forecasting model has an more accuracy forecasting result than the forecasting model based on RBF neural networks. A theoretical basis is provided for the prevention and control of gas accidents in coal mine.
出处 《传感技术学报》 CAS CSCD 北大核心 2012年第1期119-123,共5页 Chinese Journal of Sensors and Actuators
基金 辽宁教育厅高等学校科研计划项目(2009A351)
关键词 QGA算法 RBF神经网络 瓦斯涌出量 无线传感网络 quantum genetic algorithm radial basis function neural networks gas emission quantity wirelesssensor networks
  • 相关文献

参考文献13

二级参考文献100

共引文献159

同被引文献243

引证文献28

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部