期刊文献+

SF_6断路器开断能力数值预测方法研究综述 被引量:8

Review of the Numerical Prediction Method for the Interruption Capability of SF_6 Circuit Breakers
下载PDF
导出
摘要 综述了SF6断路器极限开断能力以及介质开断能力的数值预测方法的最新研究进展。电流过零前200 ns的电弧电导(G200)是判断断路器热开断能力的一个重要参数,为计算G200,对电弧特性进行模拟,在燃弧阶段采用磁流体动力学模型,而在接近电流零区采用Mayr模型,从而建立相应的电路模型来确定电弧时间常数和电弧功率损耗系数等参数,以分析高压断路器的热开断能力。为判断电击穿能力,需要根据电弧过零时灭弧室内的每一点的压力和温度值,确定对应点的临界击穿场强分布Ec,同时计算在暂态恢复电压作用下灭弧室内的电场分布Ea,然后通过比较灭弧室内各处Ea和Ec的值,就可以判断出灭弧室内不同区域电击穿几率的大小。 Numerical prediction methods both for the thermal interruption capability and the dielectric recovery capability of SF6 gas circuit breaker(GCB) are reviewed in the paper.The arc conductance 200 ns(G200) before current zero is a key parameter of the thermal interruption capability of the GCB.The magneto-hydro-dynamics(MHD) model is applied during the arcing process and the Mayr model is adopted near current zero to evaluate the G200.Then the arc time constant and the arc power loss coefficient could be obtained.To evaluate the dielectric recovery capability of GCB,the reduced electric field strength Ec has to be calculated everywhere in the interrupter after current zero.The reduced critical electric filed strength Ea has to be computed as well.The probability of the dielectric breakdown after current zero can be judged by the comparison of the Ea and Ec.It has to be indicated that the proposed numerical prediction methods are still need to be verified by further experimental efforts.
出处 《高压电器》 CAS CSCD 北大核心 2012年第3期104-107,112,共5页 High Voltage Apparatus
关键词 SF6断路器 热击穿 电击穿 SF6 gas circuit breaker thermal breakdown dielectric breakdown
  • 相关文献

参考文献21

  • 1RFC2865. Remote Authentication Dial In User Server (RADIUS)[S].
  • 2RFC2866. RADIUS Accounting[S].
  • 3RFC2869. RADIUS Extensions[S].
  • 4RIGNEY C, WILLENS S, RUBENS A, et al. Remote Authentication Dial In User Service(RADIUS)[S]. RFC 2865, June 2000.
  • 5LEWIS B, BERG DJ.Multithreaded Programming With Java Technology[M].NJ: Prentice Hall, 2000.
  • 6HERNANDEZ-AVILA J L.Pulsed townsend measurementof electron transport and ionization in SF6-N2 mixtures[J].Journal of Physics D:Applied Physics,2003(36):51-54.
  • 7OKABE S.Fundamental insulation characteristic of high-pressure CO2 gas under actual equipment conditions[J].IEEE Trans.on Dielectrics and Electrical Insulation,2007,14(1):83-90.
  • 8SEEGER M,CLAESSENS M.Dielectric recovery of axial-ly blown arcs in synthetic air in HV circuit breakers[C]//Proceedings of 14th International Conference on Gas Dis-charges.Liverpool,UK:IEEE,2002:107-110.
  • 9SEEGER M,NAIDIS G V.Dielectric breakdown in hot airin a HV circuit breaker[C]//Proceedings of 14th Inter-national Conference on Gas Discharges.Toulouse,France:IEEE,2004:73-76.
  • 10ZHANG J L,YAN J D,MURPHY A B,et al.Computa-tional investigation of arc behavior in an auto-expansioncircuit breaker contaminated by ablated nozzle vapor[J].IEEE Trans.on Plasma Science,2002,30(2):706-719.

二级参考文献29

  • 1Jones G R, Fang M T C. 1980, Rep. Prog. Phy., 43: 1415
  • 2Trepanier J Y, Zhang X, Pellegrin D, H., et al. 1995, IEEE Trans. Power Delivery, 10:817
  • 3Claessens M, Meller K, Thiel H G. 1997. J. Phys. D, Appl. Ph., 30:1899
  • 4Yan J D, Fang M T C, Hall W B. 1999, IEEE Trans. Power Delivery, 14:176
  • 5OkaJnoto M, Ishikawa M, Suzuki K, et al. 1991, IEEE Trans. Power Delivery, 6:833
  • 6Fang M T C, Zhuang Q. 1992, J. Phys. D, Appl. Phys., 25:1197
  • 7Fang M T C, Zhuang Q, Guo X J. 1994, J. Phys. D, Appl. Phys., 27:74
  • 8Herman W, Kogelschatz U, Niemeyer L, et ah 1976, IEEE Trans. Power App. Sys., PAS-95:1165
  • 9Liau V K, Lee B Y, Song K D, et al. 2006, J. Phys. D: Appl. Phys., 39:2114
  • 10Yan J D, Nuttall K I, Fang M T C. 1999, J. Phys. D: Appl. Phys., 32:1401

共引文献3

同被引文献69

引证文献8

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部