期刊文献+

核函数的选择研究综述 被引量:53

Survey of research on kernel selection
下载PDF
导出
摘要 核方法是解决非线性模式分析问题的一种有效方法,是当前机器学习领域的一个研究热点。核函数是影响核方法性能的关键因素,以支持向量机作为核函数的载体,从核函数的构造、核函数中参数的选择、多核学习3个角度对核函数的选择的研究现状及其进展情况进行了系统地概述,并指出根据特定应用领域选择核函数、设计有效的核函数度量标准和拓宽核函数选择的研究范围是其中3个值得进一步研究的方向。 Kernel method is an effective approach for non-linear pattern analysis problems and is also a new research focus in cur- rent machine learning community. Kernel function is a key factor to achieve good performhnee of kernel methods. The research state and advances in kernel selection for support vector machine (SVM) are systematically surveyed from three aspects including kernel construction, kernel parameter selection and multiple kernel learning (MKL). Furthermore, three future research direc- tions, i. e. , how to select an appropriate kernel in practice, how to design an effective kernel evaluation criterion and extend the research scope of kernel selection, are summarized.
出处 《计算机工程与设计》 CSCD 北大核心 2012年第3期1181-1186,共6页 Computer Engineering and Design
基金 江西省自然科学基金项目(20114BAB211021)
关键词 核函数 支持向量机 核方法 模型选择 多核学习 kernel function support vector machine (SVM) kernel methods model selection multiple kernel learning(MKL)
  • 相关文献

参考文献40

  • 1Boser B,Guyon I,Vapnik V.A training algorithm for optimalmargin classifiers[C].Pittsburgh,USA:Proc of the 5th An-nual ACM Conference on Computational Learning Theory,1992:144-152.
  • 2Vapnik V.The nature of statistical learning theory[M].NewYork:Springer,1995.
  • 3Shawe-Taylor J,Cristianini N.Kernel methods for pattern analysis[M].Cambridge:Cambridge University Press,2004.
  • 4任双桥,魏玺章,黎湘,庄钊文.基于特征可分性的核函数自适应构造[J].计算机学报,2008,31(5):803-809. 被引量:9
  • 5Burges C J C,Vapnik V.A new method for constructing artifi-cial neural networks[R].Interim Technical Report,ONRContract N00014-94-C-0186.Technical Report,AT&T BellLaboratories,1995.
  • 6Haussler D.Convolution kernels on discrete structures[R].Technical Report UCSC-CRL-99-10,Department of ComputerScience,University of California in Santa Cruz,1999.
  • 7Grtner T.A survey of kernels for structured data[J].ACMSIGKDD Explorations Newsletter,2003,5(1):49-58.
  • 8Viswanathan S V N,Borgwardt K M,Schraudolph N N.Fastcomputation of graph kernels[C].Advances in Neural Infor-mation Processing Systems 19,2006.
  • 9尹传环,田盛丰,牟少敏.一种面向间隙核函数的快速算法[J].电子学报,2007,35(5):875-881. 被引量:1
  • 10YIN C,TIAN S,MU S,et al.Efficient computations ofgapped string kernels based on suffix kernel[J].Neurocom-puting,2008,71(4-6):944-962.

二级参考文献76

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2Zhou Yatong Zhang Taiyi Li Xiaohe.MULTI-SCALE GAUSSIAN PROCESSES MODEL[J].Journal of Electronics(China),2006,23(4):618-622. 被引量:4
  • 3Chapelle O,Vapnik V,Bousqet O,et al.Choosing Multiple Parameters for Support Vector Machines.Machine Learning,2002,46 (1):131 -159.
  • 4Cristianini N,Campbell C,Taylor J S.Dynamically Adapting Kernels in Support Vector Machines// Proc of the Neural Information Processing Workshop.Breckenridge,USA,1999,Ⅱ:204 -210.
  • 5Larsen J,Svarer C,Andersen L N,et al.Adaptive Regularization in Neural Network Modeling//Orr G B,MUller K R,eds.Neural Networks:Trick of the Trade.Berlin,Germany:Springer,1998:113-132.
  • 6Bengio Y.Gradient-Based Optimization of Hyper-Parameters.Neural Computation,2000,12(8):1889-1900.
  • 7Frohlich H,Zell A.Efficient Parameter Selection for Support Vector Machines in Classification and Regression via Model-Based Global Optimization//Proc of the International Joint Conference on Neural Networks.Montreal,Canada,2005,Ⅲ:1431-1436.
  • 8Hsu C W,Chang C C,Lin C J.A Practical Guide to Support Vector Classification[EB/OL].[2007-03-10].http://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf.
  • 9Huang C M,Lee Y J,Lin D K J,et al.Model Selection for Support Vector Machines via Uniform Design.Computational Statistics and Data Analysis,2007,52 (1):335-346.
  • 10Smola A J,Scholkopf B.A Tutorial on Support Vector Regression.Statistics and Computing,2004,14(3):199 -222.

共引文献224

同被引文献502

引证文献53

二级引证文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部