期刊文献+

一种顾及上下文的高光谱遥感图像端元提取方法 被引量:1

Contextual endmember extraction of hyperspectral remote sensing image
原文传递
导出
摘要 端元提取技术是混合像元分解中重要的步骤之一,传统的端元提取方法仅考虑了像元的光谱信息。本文将数学形态学算子扩展到高光谱空间,并应用到端元提取技术中,可以顾及像元的上下文信息。利用AVIRIS高光谱仿真数据对算法进行了实验验证,结果表明本文算法具有较强的抗噪能力和较高的可靠性。在此基础上,结合徐州地区的EO-1 Hyperion高光谱遥感图像,使用本文算法进行了端元提取应用研究,将实验结果与纯净像元指数、顶点成分分析方法做了对比分析和精度评价,证明本文算法是一种可靠的高光谱遥感图像端元提取技术。 Endmember extraction technology is a significant part of Spectral Mixture Analysis, the traditional endmember extraction algorithms only use spectral information. The proposed algorithm based on context could use both spectral and spatial information. AVIRIS simulated data was used to verify this algorithm' s performance, and the results showed that the proposed algorithm has strong antinoise ability and high reliability. On this basis, taking EO-1 Hyperion image of Xuzhou city in 2006 as experimental data, three algorithms (the proposed algorithm, Pixel Purity Index, Vertex Component Analysis) were used for endmember extraction. The results of comparison indicated that the proposed algorithm could be a reliable endmember extraction technology. Finally, abundance maps were obtained based ori Back-Propagation Neural Network.
出处 《测绘科学》 CSCD 北大核心 2012年第2期126-128,32,共4页 Science of Surveying and Mapping
关键词 端元提取 数学形态学 上下文信息 高光谱遥感 endmember extraction mathematical morphology context information hyperspectral remote sensing
  • 相关文献

参考文献7

二级参考文献36

共引文献97

同被引文献10

  • 1Boardman J W, Kruse F A, Green R O. Mapping Target Signatures Via Partial Unmixing of AVIRIS Data. In: 15th JPL Airborne Geoscience Workshop. Pasadena: JPL Pub, 1995: 23.
  • 2Gruninger J H, Ratkowski A J, Hoke M L. The Sequential Maximum Angle Convex Cone(SMACC)Endmember Model. Proceedings SPIE 5425, Algorithms for Multispectral and Hyper-spectral and Ultraspectral Imagery X, Orlando, USA, 2004: 1.
  • 3Winter M E. Proc SPIE, Imaging Spectrometry V, 1999, 3753: 266.
  • 4Nascimento J M, Bioucas-Dias J M. IEEE Transactions on Geosciences and Remote Sensing, 2005, 43(4): 898.
  • 5罗文斐,高连如. 遥感学报, 2011, 15(6): 1202.
  • 6盛骤,谢式千,潘承毅. 概率论与数理统计. Beijng: Higher Education Press(北京: 高等教育出版社), 2001. 56.
  • 7Shannon C E. Bell System Technical Journal, 1948, 27(3): 379.
  • 8Green A A, Berman M, Switzer P, et al. IEEE Transactions on Geosciences and Remote Sensing, 1988, 26(1): 65.
  • 9李二森,朱述龙,周晓明,余文杰.高光谱图像端元提取算法研究进展与比较[J].遥感学报,2011,15(4):659-679. 被引量:32
  • 10张兵,孙旭,高连如,杨丽娜.一种基于离散粒子群优化算法的高光谱图像端元提取方法[J].光谱学与光谱分析,2011,31(9):2455-2461. 被引量:20

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部