期刊文献+

基于AdaBoost.M2-NN的变压器故障诊断 被引量:4

Fault Diagnosis of Transformer Based on AdaBoost.M2-NN
下载PDF
导出
摘要 组合分类器的经典算法AdaBoost即自适应Boosting算法是提高预测学习系统预测能力的有效工具.针对传统BP(Back Propagation,BP)神经网络在变压器故障诊断时存在不稳定和网络易陷于极小值等缺点,将AdaBoost扩展算法AdaBoost.M2与BP神经网络结合,形成基于Ada-Boost.M2-NN(AdaBoost.M2Neural Network)的变压器故障诊断模型.利用AdaBoost的集成提升作用,在一定程度上弥补了BP算法的不足.仿真结果表明:该模型不仅能将单个BP神经网络无法识别的样本类别识别出来,而且还能整体上相比BP神经网络和传统三比值法将识别率提高11.5%,说明其具有可行性. As a classical classifier combination method,AdaBoost is an effective tool to improve the predictive ability of predictive learning system.Because of the shortage of the conventional BP neural network when it is used in transformer fault diagnosis,the expansion type AdaBoost.M2 of AdaBoost algorithm is applied to fault diagnosis based on BP neural networks to set up an AdaBoost.M2-NN model for transformer fault diagnosis.The role of integration of AdaBoost makes up for the BP algorithm to some extent.AdaBoost.M2-NN model can not only identify the samples that the single BP neural network can not identify,but also raise the rate of identification by 11.5% as compared with the single BP neural network and the traditional three-ratio method.The results show that this method is reliable and feasible.
作者 张燕 倪远平
出处 《甘肃科学学报》 2012年第1期97-101,共5页 Journal of Gansu Sciences
基金 国家自然科学基金资助项目(30860055)
关键词 AdaBoost.M2 BP神经网络 变压器 故障诊断 AdaBoost.M2 BP neural network transformer fault diagnosis
  • 相关文献

参考文献8

二级参考文献82

  • 1李清禄,俞焕然.基于神经网络等强度超静定梁的优化设计[J].甘肃科学学报,2005,17(3):16-19. 被引量:11
  • 2孙才新,廖瑞金,陈伟根,冯道寻,周祖纯,宋兹楠.变压器油中溶解气体的在线监测研究[J].电工技术学报,1996,11(2):11-15. 被引量:29
  • 3曾怀恩.基于GPS的路基压实质量控制方法研究与系统实现[D].武汉:武汉大学,2008.
  • 4GuoG D, Zhang H J. Boosting for Fast Face Recognition. In: Proc of 2nd International Workshop on Recognition, Analysis and Tracking of Faces and Gestures in Real-Time Systems. Vancouver, Canada, 2001, 96- 100.
  • 5Abney S, Schapire R E, Singer Y. Boosting Applied to Tagging and PP Attachment. ln: Proc of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. New Brunswick, NJ, 1999, 38-45.
  • 6Rochery M, Schapire R E, Rahim M, Gupta N. BoosTexter for Text Categorization in Spoken Language Dialogue. In: Autmmtic Speech Recognition and Understanding Workshop. Madonna di Campiglio Trento, Italy, 2001. Available at http://www, cs.princeton, edu/-schapire/publist, html.
  • 7Rochery M, Schapire R, Rahim M, Gupta N, Riceardi G, Bangalore S, Alshawi H, Douglas S. Combining Prior Knowledge and Boosting for Call Class~flcat~on in Spoken Language DiaLogue. In:Proc of International Conference on Aceousties, Speech and Signal. Orlando, Florida. 2002. Available at http://www, cs/princetonedu/-schapire/whatsnew. html.
  • 8Schapire R E, Singer Y. BcosTexter: A Bcosting-Based System for Text Categorization. Machine Learning, 2000, 39(2- 3): 135- 168.
  • 9Schapire R E, Rochery M, Rahim M, Gupta N. Incorporating Prior Knowledge into Boosting. In: Proc of the 19th International Conference on Machine Learning. Sydney, 2002, 538 - 545.
  • 10Schwenk H, Bengio Y. Adal3oosting Neural Networks: Application to On-Line Character Recognition. In: Proc of the International Conference on Artificial Neural Networks ( ICANN' 97 ). Lausanne, Switzerland: Springer-Verlag, 1997, 967-972.

共引文献245

同被引文献33

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部