期刊文献+

基于关键点梯度特征描述的人体行为识别算法

Human action recognition algorithm based on gradient feature description for interest points
下载PDF
导出
摘要 提出一种新的人体行为识别方案并进行了算法实现。通过对视频序列在空间上高斯滤波,在时间轴向上Gabor滤波,提取出视频序列的关键点,对每个关键点邻域20×20的区域使用梯度位置朝向直方图进行描述,描述的序列可以表征视频序列的特征。与其他人体行为识别算法比较,不需要标记特定的特征区域和比较耗时的聚类算法,构建单个支持向量分类器即可达到好的识别率,算法简单有效。 A scheme of new human action recognition is presented and its algorithm is performed. The interest points in video sequence are extracted through Gaussian filtering in space of video sequence and Gabor filtering in time axis. The GLOH (gradient location orientation histogram) is adopted to describe the features of the threshold 20 X 20 region at each interest pointe. The described sequence may feature the video sequence. Comparing with other human action recognition algorithms, only by establishing a single support vector classifier can the algorithm realize the high recognition rate, that is, it need not label the given feature region and use the classification algorithm which wastes time. The algorithm is simple and efficient.
作者 范引娣
出处 《现代电子技术》 2012年第6期119-122,共4页 Modern Electronics Technique
关键词 关键点检测 梯度位置朝向直方图 人体行为识别 支持向量机 detection at interest point GLOH human action recognition SVM
  • 相关文献

参考文献11

  • 1凌志刚,赵春晖,梁彦,潘泉,王燕.基于视觉的人行为理解综述[J].计算机应用研究,2008,25(9):2570-2578. 被引量:22
  • 2蔺广逢,张二虎,顾桓,潘向辉,范引娣.基于功率谱密度的人体运动状态检测[J].计算机应用,2008,28(5):1269-1271. 被引量:1
  • 3SCHMID C,MOHR R,BAUCKHAGE C.Evaluation ofinterest point detectors[J].International Journal of Com-puter Vision,2000,2(37):151-172.
  • 4LAPTEV I.On space-time interest points[J].Internation-al Journal of Computer Vision,2005,64(2/3):107-123.
  • 5DOLLAKA R P,RABAUD V,COTTRELL G,et al.Be-havior recognition via sparse spatio-temporal features[C]//Proceedings of 2nd Joint IEEE International Workshop onVisual Surveillance and Performance Evaluation of Trackingand Surveillance.[S.l.]:IEEE,2005:65-72.
  • 6KE Y,SUKTHANKAR R,HEBERT M.Efficient visual e-vent detection using volumetric features[C]//Proceedings ofthe Tenth IEEE International Conference on Computer Vision.Los Alamitos:IEEE Computer Society,2005:166-173.
  • 7OIKONOMOPOULOS A,PATRAS I,PANTIC M.Hu-man action recognition with spatiotemporal salient points[J].IEEE Transactions on Systems,Man,and Cyberne-tics,Part B:Cybernetics,2006,36(3):710-719.
  • 8NIEBLES Juan Carlos,WANG Hong-cheng,LI Fei-fei.Unsuspervised learning of human action categories usingspatial-temporal words[J].International Journal of Com-puter Vision,2008,79(4):299-318.
  • 9云廷进,郭永彩,高潮.基于图像局部区域梯度特征描述的红外人体识别算法[J].光学技术,2008,34(3):441-444. 被引量:3
  • 10GUO G D,LI S Z.Content-based audio classification andretrieval by support vector machines[J].IEEE Trans.onNeural Network,2003,14(1):209-115.

二级参考文献168

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部