期刊文献+

低信噪比下稳健压缩感知成像 被引量:4

Robust Compressive Sensing SAR imaging in Low SNR Conditions
原文传递
导出
摘要 由于基于l1范数的压缩感知理论模型无法充分挖掘信号的稀疏性,因此在重建过程中无法实现对待重构系数的等权值约束,进而导致在信噪比较低时,噪声分布的不稀疏性会严重影响目标信息的重建,造成成像结果中会出现大量虚假目标,成像性能急剧下降。本文在深入分析了加权l1范数模型的基础上,提出了一种更加稳健的适用于含噪模式下的高分辨率压缩感知微波成像模型。该模型在借鉴常规加权l1范数模型的基础上,针对权重选择及加权方式进行了修正,使得权值的变化程度和权值大小分离,可以做到相同的惩罚约束,从而实现成像过程中噪声分量的有效抑制,实验结果说明了低信噪比下所提模型的有效性。 The l1-norm based compressed sensing(CS) model cannot fully explore the sparsity property of a signal,and the weighted constraint of the restored coefficients is seldom equally arranged during the reconstruction.Therefore,the characteristic of the non-sparsity of the noise will seriously affect the restoration of the target information in low signal-to-noise(SNR) conditions,which may result in quite many false targets during imaging,leading to a sharp decline of the imaging quality.This paper provided a detailed analysis of the reweighted l1-norm model for CS reconstruction,and proposed a robust high resolution imaging model with corrupted echo.The main idea is inspired by the canonical reweighted l1-norm based CS model,but the selection of the weight parameters are improved,which equally penalize the variation and separation of large and small weights,and the noise components can be effectively suppressed during the imaging.Simulation results testify the validity of the proposed model in low SNR conditions.
出处 《航空学报》 EI CAS CSCD 北大核心 2012年第3期561-572,共12页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60902079 60902031 61033004 61070138) 中央高校基本科研业务费专项基金(K50510020018)~~
关键词 低信噪比 压缩感知 雷达成像 加权范数 高分辨 low SNR compressive sensing radar imaging weighted norm high-resolution
  • 相关文献

参考文献16

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 5406-5425.
  • 2Cand's E J, Romberg J, Tao T. Robust uncertainty prin- ciples. Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489 509.
  • 3Cand's E J, Wakin M B. An introduetion to compressive sampling. IEEE Signal Processing Magazine, 2008, 25 (2) = 21-30.
  • 4Donoho D L, Tsaig Y. Extensions of compressed sensing. Signal Processing, 2006, 86(3) : 533-548.
  • 5Babacan S D, Molina R, Katsaggelos A K. Bayesian com- pressive sensing using Laplace priors. IEEE Transactions on Image Proeessing, 2010, 19(1): 53-63, 2010.
  • 6Baraniuk R, Steeghs P. Compressive radar imaging. IEEE Radar Conference. 2007:128 133.
  • 7Getin M, Karl W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regulariza- tion. IEEE Transactions on Image Processing, 2001= 10 (4) : 623 631.
  • 8Patel V M, Easley G R, Healy D M, et al. Compressed synthetic aperture radar. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254.
  • 9Xu J P, Pi Y M. Compressed sensing in radar high resolu- tion range imaging. Journal of Computational Information Systems 2010, 7(3) : 778 785.
  • 10谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,2010,32(5):1234-1238. 被引量:49

二级参考文献16

  • 1Tsaig Y and Donoho D L.Extensions of compressed sensing[J].Signal Processing,2006,86(3):549-571.
  • 2Candes E J,Romberg J,and Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 3Baraniuk R and Steeghs P.Compressive radar imaging[C].IEEE Radar Conference,Boston,MA,USA,Apr.17-20,2007:128-133.
  • 4Herman M and Strohmer T.Compressed sensing radar[C].IEEE International Conference on Acoustics,Speech and Signal Processing,Las Vegas,NV,USA,Mar.30-Apr.4,2008:1509-1512.
  • 5Yoon Y S and Amin M G.Compressed sensing technique for high-resolution radar imaging[J].Proceedings of the SPIE,2008,Vol.6968:69681A-69681A-10.
  • 6Varshney K R,Cetin M,and Fisher J W,et al..Sparse representation in structured dictionaries with application to synthetic aperture radar[J].IEEE Transactions on Signal Processing,2008,56(8):3548-3561.
  • 7Potter L C,Schniter P,and Ziniel J.Sparse reconstruction for radar[J].Proceedings of the SPIE,2008,Vol.6970:697003-697003-15.
  • 8Tello M,Lopez-Dekker P,and Mallorqui J J.A novel strategy for radar imaging based on compressive sensing[C].International Geoscience and Remote Sensing Symposium,Boston,MA,USA,Jul.7-11,2008,Vol.2:II-213-II-216.
  • 9Gurbuz A C,Mcclellan J H,and Scott W R Jr.GPR imaging using compressed measurements[C].International Geoscience and Remote Sensing Symposium,International Geoscience and Remote Sensing Symposium,Boston,MA,USA,Jul.7-11,2008,Vol.2:II-13-II-16.
  • 10Lin Yun,Hong Wen,and Tan Wei-xian,et al..Compressed sensing technique for circular SAR imaging[C].IET International Radar Conference,Guilin,China,Apr.20-22,2009:676-679.

共引文献48

同被引文献34

  • 1Yang X P, Liu Y X, and Long T. Performance analysis of optimal and reduced-dimension STAP for airborne phased array radar[C]. 2010 9th International Symposium on Antennas Propagation and EM Theory (ISAPE), Guangzhou 2010: 1116-1119.
  • 2Jean-Francois D, Laurent S, and Sylvie M. Reduced-rank STAP for target detection in heterogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1153-1162.
  • 3Li Xao-ming, Feng Da-zheng, Liu Hong-wei, et al.. Dimension-reduced space-time adaptive clutter suppression algorithm based on lower-rank approximation to weight matrix in airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 53-69.
  • 4Hayward S D. Principle of space-time adaptive processing[J]. Electronics & Communication Engineering Journal, 2002, 14(6): 295-296.
  • 5Oberlin T, Meignen S, and McLaughlin S. Analysis of strongly modulated multicomponent signals with the short-time Fourier transform[C]. 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vancouver, Canada, 2013: 1558-1564.
  • 6Ma N and Wang J X. Wide band LFM signal parameter estimation based on compressed sensing theory[C]. 3rd International Conference on Manufacturing Engineering and Process, ICMEP 2014, Seoul, Korea, 2014: 1160-1165.
  • 7Singh K, Saxena R, and Kumar S. Caputo-based fractional derivative in fractional Fourier transform domain[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013, 3(3): 330-337.
  • 8Candes E J and Wakin M B. An introduction to compressive sampling: a sensing/sampling paradigm that goes against the common knowledge in data acqmsition[J]. IEEE Signal Processing, 2008, 25(2): 21-30.
  • 9O' Shea P. A fast algorithm for estimating the parameters of a quadratic FM signal[J]. IEEE Transactions on Signal Processing, 2004, 52(2): 385-393.
  • 10Cheng Ting He Zishu Tang Ting.Dwell scheduling algorithm for multifunction phased array radars based on the scheduling gain[J].Journal of Systems Engineering and Electronics,2008,19(3):479-485. 被引量:19

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部