期刊文献+

基于改进最小二乘支持向量机的导弹备件消耗预测 被引量:2

Consumption forecasting of Missile spare parts based on improved least squares support vector machine
下载PDF
导出
摘要 在系统分析武器装备备件预测方法研究现状和导弹备件消耗特点的基础上,提出把粗糙集、熵权法、自适应粒子群优化算法与加权最小二乘支持向量机的组合预测模型应用于导弹备件消耗预测的构想。首先阐述了粗糙集、信息熵、自适应粒子群优化算法和加权最小二乘支持机的基本原理,并改进了自适应粒子群优化算法的搜索方式和最小二乘支持向量机的加权方法;然后建立了基于粗糙集、熵权法和自适应粒子群优化加权最小二乘支持向量机的导弹备件消耗预测模型,并分析了其实现过程。实例结果表明,所建立的组合预测模型在进行导弹备件消耗预测时具有较高的精度和重要的实用价值。 On the basis of analyzing systemically present research condition of forecast method toward weapon and equipment spare parts and consumption characteristic of Missile spare parts, the paper brought forward the thought of applying forecast model composed of rough set, entropy weight , and weighted least squares support vector machine with adaptive particle swarm optimization to consumption forecasting of Missile spare parts. Firstly, the paper presented basic theory, improved on search mode of adaptive particle swarm optimization and weighted method of least squares support vector machine; Secondly, the paper established consumption forecasting model of Missile spare parts based on rough set ,entropy weight and weighted least squares support vector machine with adaptive particle swarm optimization, and analyzed its realization process. Lastly, the example results proved the combinatorial forecasting model have better forecast precision and important applied value in the course of consumption forecasting of Missile spare parts.
出处 《贵州师范大学学报(自然科学版)》 CAS 2012年第2期95-102,共8页 Journal of Guizhou Normal University:Natural Sciences
关键词 加权最小二乘支持向量机 粗糙集 熵权 自适应粒子群优化 备件 消耗预测 weighted least squares support vector machine rough set entropy weight adaptive particle swarm optimization spare parts consumption forecasting
  • 相关文献

参考文献23

二级参考文献130

共引文献531

同被引文献22

  • 1ZHANG Jian-guo.The Optimal Weighted Combinational Forecasting with Constant Terms[J].Chinese Quarterly Journal of Mathematics,2007,22(1):109-113. 被引量:1
  • 2鄂卫波,李旭昌,杨维群.基于可靠度的武器系统备件需求模型分析[J].弹箭与制导学报,2007,27(1):332-333. 被引量:10
  • 3陈凤腾,左洪福,王华伟,倪现存,白芳.基于非齐次泊松过程的航空备件需求研究和应用[J].系统工程与电子技术,2007,29(9):1585-1588. 被引量:14
  • 4Yang X S. Nature-inspired metaheuristic algorithms[M]. New York: Luniver Press, 2008.
  • 5Nezih A, Lewis A L. Service parts management: demand forecas- ting and inventory control[M]. London: Springer Press, 2011.
  • 6Yager R R. Induced aggregation operators[J]. Fuzzy Sets and Systems, 2003, 137(1): 59-63.
  • 7Xu Z S, Da Q L. The ordered weighted geometric averaging op- erators[J]. International Journal of Intelligent Systems, 2002, 17(6) : 709 - 716.
  • 8Snyder R D, Ralph D K, Anne B O, et al. Forecasting for in- ventory control with exponential smoothing [J].International Journal of Forecasting, 2002, 18(1) : 5 - 18.
  • 9Ji L G, Zhang S N, Zhou M. A new GM(1,1) model for predic- ting oscillation date sequence [ C ] // Prognostics & System Health Management Conference, 2011 : 257 - 259.
  • 10Suykens J A K, Van Gestel T, De Brabanter J, et al. Least squares support vector machines [M]. Singapore: World Scien- tific Publishing Co. Pte. Ltd. , 2002.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部