摘要
In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones.
In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones.
基金
Supported by the National Natural Science Funds (11071075)
the Natural Science Foundation of Shanghai(10ZR1409200)
the National Laboratory of Biomacromolecules,Institute of Biophysics,Chinese Academy of Sciences
the E-Institutes of Shanghai Municipal Education Commissions(E03004)