期刊文献+

基于样本加权的可能性模糊聚类算法 被引量:21

A Sample-Weighted Possibilistic Fuzzy Clustering Algorithm
下载PDF
导出
摘要 可能性模糊聚类算法解决了噪音敏感和一致性聚类问题,但算法假定每个待分析样本对聚类的贡献相同,导致离群点或噪声点对算法的干扰较强,算法迭代次数过大.为此,提出一种基于样本加权的可能性模糊聚类算法,新算法具有更快的收敛速度,对标准数据集和人工数据集加噪后的测试结果表明,该算法具有更强的鲁棒性,在有效降低时间复杂度的同时能够取得较好的聚类准确率. The possibilistic fuzzy clustering algorithm overcomes the problem of sensitivity to noises and coincident clusters, but it assumes the contribution of each sample is equal, which leads to strong impact from outliers or noises and too many iterations. For this reason,this paper proposes a novel faster possibilistic fuzzy clustering algorithm based on the sample-weighted idea. The re- sults of the experiments on standard data sets and synthetic data sets show that the sample-weighted algorithm is more robust against noises and outliers and reduces the time complexity effectively, and can obtain good clustering accuracy at the same time.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第2期371-375,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.50674086) 国家博士后科学基金(No.20070421041)
关键词 样本加权 可能性C-均值聚类 可能性模糊聚类 sample-weighted possibilistic c-means clustering possibilistic fuzzy clustering
  • 相关文献

参考文献16

二级参考文献56

  • 1刘健庄,谢维信,高新波.多阈值图像分割的遗传算法方法[J].模式识别与人工智能,1995,8(A01):126-132. 被引量:8
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms [ M].New York:Plenum Press, 1981.
  • 4J C Bezdek, J Keller, R Krisnapuram, N R Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [ M]. Kluwer Academic, 1999.
  • 5R Krishnapuram, J Keller. A possibilistic approach to clustering [J].IEEE Trans Fuzzy Systems, 1993,1 ( 2 ) : 98 - 110.
  • 6M Bami, V Cappellini, A Mecocci. Comments on "A possibilistic approach to clustering" [ J ]. IEEE Trans Fuzzy Systems, 1996,4(3):393 - 396.
  • 7N R Pal, K Pal, J C Bezdek. A possibilistic fuzzy c-means clustering algorithm [J].IEEE Trans Fuzzy Systems,2005,13(4) :517 - 530.
  • 8Pal N R,Pal K, Bezdek J C.A new hybrid C-means clustering model [A ]. In Proceedings of the IEEE International Conference On Fuzzy Systems [C]. Piscataway: IEEE Press, 2004. 179 - 184.
  • 9Krishnapuram R, Keller J. The possibilisfic c-means algorithm: Insights and Recommendations [J].IEEE Transaction Fuzzy Systems, 1996,4(3) :385 - 393.
  • 10Wu Xiao-hong, Zhou Jian-jiang. Allied fuzzy c-means clustering model [ J ]. Transaction of Nanjing University of Aeronautics and Aslronautics, 2006,23 (3) :208 - 213.

共引文献1333

同被引文献168

引证文献21

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部