期刊文献+

基础简谐激励下的结构动响应拓扑优化

Structural dynamic response topology optimization under basic harmonic excitation
下载PDF
导出
摘要 针对关于结构动响应拓扑优化问题的研究较少、有限元分析软件的拓扑优化模块无法实现的问题,采用变密度法研究连续体结构在基础简谐激励下的动响应拓扑优化.将基础简谐激励下的响应控制问题归结为结构在体积约束下目标点响应幅值最小化的优化模型;推导有阻尼结构在基础简谐激励下目标点响应幅值的灵敏度公式;采用变密度法求解该优化问题.采用多项式惩罚模型解决带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP)模型带来的附属效应现象;采用灰度过滤方法改善经典变密度法在优化过程中灰度单元收敛过慢的问题,从而减少变密度法优化的迭代步数并且使优化结果更清晰.以平面悬臂板模型为例,验证该优化方法对目标点响应幅值的优化以及灰度过滤函数对优化迭代的改善. As to the facts that there are few studies on structural dynamic response topology optimization and it can not be achieved by the topology optimization modules of finite element analysis software,the dynamic response topology optimization of continuum structure under basic harmonic excitation is studied by variable density method.To control the response under basic harmonic excitation,an optimization model is established with an aim for minimization response amplitude of concern points under volume constraint;the response amplitude sensitivity equation of certain points is derived for structure with damp under basic harmonic excitation;then the optimization problem is solved by variable density method.The affiliated effect of SIMP(Solid Isotropic Microstructure with Penalization) model is solved by polynomial penalty model;a gray filtration method is used to solve the low convergence rate of gray elements in the optimization using classical variable density method,and the optimization iteration steps of variable density method are decreased and the optimization result becomes clearer.a plane cantilever plate is optimized,and the result indicates that the method can improve the optimization on the response amplitude of concern points and the gray filtration function can decrease optimization steps.
作者 李翔 王皓
出处 《计算机辅助工程》 2012年第1期70-73,86,共5页 Computer Aided Engineering
关键词 基础简谐激励 动响应 拓扑优化 变密度法 附属效应 灰度过滤 basic harmonic excitation dynamic response topology optimization variable density method affiliated effect gray filtration
  • 相关文献

参考文献10

  • 1BENDSE M P,SIGMUND O.Topology optimization:theory,methods and applications[M].New York:Springer,2003:23-30.
  • 2BENDSE M P,SIGMUND O.Material interpolation schemes in topology optimization[J].Arch Appl Mech,1999,69(9-10):635-654.
  • 3XIE Y M,STEVEN G P.A simple evolutionary procedure for structural optimization[J].Computers&Structures,1993,49(5):885-896.
  • 4SETHIAN J A,WIEGMANN A.Structural boundary design via level set and immersed interface methods[J].J Comput Phys,2000,163(2):489-528.
  • 5陈建军,车建文,崔明涛,戴君,马洪波.结构动力优化设计述评与展望[J].力学进展,2001,31(2):181-192. 被引量:80
  • 6石连栓,孙焕纯,冯恩民.具有动应力和动位移约束的离散变量结构拓扑优化设计方法[J].应用数学和力学,2001,22(7):695-700. 被引量:9
  • 7PEDERSON N L.Maximization of eigenvalues using topology optimization[J].Struct&Multidisciplinary Optimization,2000,20(1):2-11.
  • 8BURYNEEL M,DUYSINX P.Note on topology optimization of continuum structures including self-weight[J].Struct&MultidisciplinaryOptimization,2005,29(4):245-256.
  • 9张晖,刘书田,张雄.考虑自重载荷作用的连续体结构拓扑优化[J].力学学报,2009,41(1):98-104. 被引量:10
  • 10ZHU Jihong,ZHANG Weihong,BECKERS P.Integrated layout design of multi-component system[J].Int J Numer Methods Eng,2009,78(6):631-651.

二级参考文献41

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部