期刊文献+

一种无冗余的Web日志挖掘算法

A New Web Log Mining Algorithm without Redundancy
下载PDF
导出
摘要 Web日志挖掘是Web数据挖掘的一个重要研究领域。Web日志挖掘通过发现Web日志中用户的访问规律和模式,可以提取出其中潜在的规律和信息,人们对这个领域的研究也日益重视。然而,传统的基于关联规则的Web日志挖掘算法都是基于所有关联规则的。这种方式往往挖掘产生大量的候选规则,而且存在大量冗余的规则。提出了一种新的无冗余的Web日志挖掘算法,该算法通过引入频繁闭项集合最小关联规则的概念,从而解决了以往基于所有关联规则挖掘算法中出现的上述问题。 Web log mining is one of the important research areas in Web data mining,through which the access law and mode of the user could be found. More attention is also paid to the Web log mining. However, the traditional Web log mining algorithm are all based on all of the association rules. And the traditional way often produces not only large amounts of the candidate frequent itemsets, but also lots of redundant rules. This paper puts forward a new Web log mining algorithm without redundancy,and the concept of frequent closed itemsets and minimal association rules are proposed to solve the problems appeared in mining Web log based on all frequent itemset association rules.
作者 秦东霞 姚遥
出处 《智能计算机与应用》 2012年第1期31-34,共4页 Intelligent Computer and Applications
基金 周口师范学院青年科研基金资助项目(zknuqn201031A)
关键词 WEB日志挖掘 闭频繁项集 格结构 最小关联规则 Web Log Mining Frequent Closed Itemsets Lattice Minimal Association Rules
  • 相关文献

参考文献2

二级参考文献20

  • 1靳风荣,郑雪峰.Web日志挖掘的预处理过程及算法[J].微型电脑应用,2004,20(6):44-45. 被引量:5
  • 2[1]COOLEY R,MOBASHER B,SRIVASTAVA J.Data Preparation for Mining World Wide Web Browing Patterns[J].Journal of Knowledge and Information System,1999.
  • 3[2]WUKLYUPS,BALLMAN A.Speed Tracer:A Web Usage Mining and Analysis tool[J].IBM System Journal,1998(1):44-48.
  • 4[3]PEI J,HAN J,MORTAZAVI-ASL B,et al.Mining Access Pattern efficiently from Web logs[C]//Proc.2000 Pacific-Asia Conf.on Knowledge Discovery and Data Mining,Japan,Kyoto,2000.
  • 5[4]COOLEY R,MOBASHER B,SRIVASTAVA J.Web mining:Information and Pattern discovery on the World Wide Web[J].Proc.IEEE Intl.Conf.Tools with AI,Dec.1997,2(16):25-28.
  • 6R Agrawal,R Srikant.Fast algorithm for mining association rules[C].The 20th Int'l Conf on VLDB,Santiago,Chile,1994.
  • 7Liu Pei-Qi,Li Zeng-Zhi,Zhao Yin-Liang.Effective algorithm of mining frequent itemsets for association rules[C].In:Proc of the 3rd Int'l Conf on Machine Learning and Cybernetics.Piseataway,NJ:IEEE Press,2004.1447-1451.
  • 8Chang Chin-Chen,Li Yu-Chiang,Lee Jung-San.An efficient algorithm for incremental mining of association rules[C].In:Proc of 15th Int'l Workshop on Research Issues in Data Engineering:Stream Data Mining and Applications.Piscataway.NJ:IEEE Press,2005.3-10.
  • 9Xu Yong,Zhou Sen-Xin.Research on the distributed treatment of frequent itemsets extraction based on pruned concept lattices[C].In:Proc of the 5th Int'l Conf on Machine Learning and Cybernetics.Piscataway,NJ:IEEE Press,2006.1332-1336.
  • 10Dao-I Lin,Z M Kedem.Pincer.Search:A new algorithm for discovering the maximum frequent set[C].In:H J Schek,F Saltor,I Ramos,et al.eds.Proc of the 6th European Conf on Extending Database Technology.Heidelberg:Springer,1998.105-119.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部