期刊文献+

地震数据压缩重构的正则化与零范数稀疏最优化方法 被引量:40

Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization
下载PDF
导出
摘要 地震数据重构问题是一个病态的反演问题.本文基于地震数据在curvelet域的稀疏性,将地震数据重构变为一个稀疏优化问题,构造0范数的逼近函数作为目标函数,提出了一种投影梯度求解算法.本文还运用最近提出的分段随机采样方式进行采样,该采样方式能够有效地控制采样间隔并且保持采样的随机性.地震数值模拟表明,基于0范数逼近的投影梯度法计算效率有明显的提高;分段随机采样方式比随机欠采样有更加稳定的重构结果. Seismic data restoration is an ill-posed inverse problem. Based on the sparseness of seismic data in the curvelet domain, this problem can be transformed into a sparse optimization problem. This paper proposes to use the approximation of zero-norm as the objective function and develop a projected gradient method to solve the corresponding minimization problem. We also employ a recently proposed piecewise random sampling method which can both control the sampling gap and keep the randomness of sampling. Numerical results show that the projectedgradient method can reduce the amount of computation greatly, and the restoration based on the piecewise random sampling are better than that of random sub-sampling.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2012年第2期596-607,共12页 Chinese Journal of Geophysics
基金 国家自然科学基金项目(10871191 40974075) 中国科学院知识创新工程重要方向性项目(KZCX2-YW-QN107) 石家庄经济学院博士科研启动基金联合资助
关键词 波场重构 CURVELET变换 压缩传感 0范数逼近 反问题 不适定性 稀疏优化 Wavefield recovery, Curvelet transform, Compressed sensing, Zero-normapproximation, Inverse problems, Ill-posedness, Sparse optimization
  • 相关文献

参考文献1

二级参考文献20

  • 1Li X,,Wang J,Hu B, et al.On unitilization of a priori knowledge in inversion of remote sensing models. Sci China Ser D-Earth Sci . 1998
  • 2Wang Y F.Computational Methods for Inverse Problems and Their Applications. . 2007
  • 3Horn H K P,Schunck B G.Determining optical flow. Artificial Intelligence . 1981
  • 4Roujean,J. L.,Leroy,M.,Deschamps,P. Y.A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. Journal of Geophysical Research . 1992
  • 5Verstraete M M,Pinty B,Myneni R B.Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sensing of Environment . 1996
  • 6Li Xiaowen,Gao Feng,Wang Jindi,et al.A prioriknowledge accumulation and its application to linearBRDF model inversion. J Geophys Res D . 2001
  • 7Pokrovsky,O,Roujean,J-L.Land surface albedo retrieval via kernel-based BRDF modeling: 1. Statistical inversion method and model comparison. Auditori de Torrent, Spain, September 2002. Remote Sensing of Environment . 2002
  • 8Pokrovsky O,Roujean J L.Land surface albedo retrieval via kernel-based BRDF modeling:Ⅱ.an optimal design scheme for the angular sampling. Remote Sensing of Environment . 2002
  • 9Wang Y F,Li X W,Nashed Z,et al.Regularized kernel-based BRDF model inversion method for ill-posed land surface parameter retrieval. Remote Sensing of Environment . 2007
  • 10Strahler A H,Li X W,Liang S,et al.MODIS BRDF/Albedo product:algorithm technical basis document. Nasa EOS-Modis Doc . 1994

共引文献3

同被引文献289

引证文献40

二级引证文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部