摘要
将重复排列数、重复组合数、(广义)第二类Stirling数等排列组合的知识巧妙用来解决概率论中的几类"分球入盒"问题,其中涉及到球是否可辨、盒是否可辨等多种情况,并举出一些实例对模型加以应用。
Through the ways of permutation and combination such as permutation number with repetition,combination number with repetition and(general) Stirling number of the second kind,this paper resolves several types of "distributing balls into the boxes" problems in probability theory,relating to such circumstances as whether the ball can be identified,whether the box can be identified and so on.Furthermore,some practical examples are given to apply the given models.
出处
《江西电力职业技术学院学报》
CAS
2012年第1期76-78,82,共4页
Journal of Jiangxi Vocational and Technical College of Electricity
基金
浙江省教育厅科研项目(Y200805543)
2010绍兴文理学院科研项目(2010LG1004)
2010绍兴文理学院青年基金项目
关键词
重复排列数
重复组合数
(广义)第二类Stirling数
分球入盒
不可辨
permutation number with repetition
combination number with repetition
(general) Stirling number of the second kind
dividing balls into the boxes
undistinguishable