期刊文献+

微分求积法处理轴向变速黏弹性梁混杂边界条件 被引量:6

Treating hybrid boundary condition of an axially accelerating viscoelastic beam via a differential quadrature scheme
下载PDF
导出
摘要 给出了一种利用微分求积法处理非线性轴向变速黏弹性梁的混杂边界条件的方法。利用微分求积法数值求解具有混杂边界轴向变速黏弹性梁的控制微分方程,将混杂边界条件直接引入到控制微分方程高阶导数的微分求积解权系数矩阵中。使用这种方法研究了非线性轴向变速黏弹性梁主参数共振的稳态幅频响应,并对算例的微分求积解和解析近似解做了比较。 A methodology treating hybrid support boundary condition of a nonlinear axially accelerating viscoelastic beam via differential quadrature scheme was presented. Differential quadrature scheme was employed to solve numerically nonlinear governing differential equation of an axially accelerating viscoelastic beam with hybrid supports, The procedure how the hybrid boundary condition was induced into the differential quadrature weighted coefficient matrices was explained. The steady-state response was investigated when the principal parameter resonances of the axially accelerating viscoelastic beam occured. Numerical and analytical solutions were compared in numerical examples.
作者 王波 陈立群
出处 《振动与冲击》 EI CSCD 北大核心 2012年第5期87-91,共5页 Journal of Vibration and Shock
基金 国家杰出青年科学基金(10725209) 长江学者和创新团队发展计划资助(IRT0844) 上海高校青年教师培养资助计划(YYY11040) 上海市教育委员会重点学科建设资助项目(J51501) 上海应用技术学院引进人才科研启动项目(YJ2011-26)
关键词 轴向变速梁 黏弹性 混杂边界 微分求积法 主参数共振 axially accelerating beam viscoelasticity hybrid boundary condition differential quadrature scheme principal parameter resonance
  • 相关文献

参考文献16

  • 1Chen L Q. Nonlinear vibrations of axially moving beams [ J ]. Nonlinear Dynamics (ed. by Todd Evans, Intecb), 2010, 145 - 172.
  • 2Chen L Q, Yang X D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports[ J ]. European Journal of Mechanics A/Solids, 2006, 25 (6) :996 - 1008.
  • 3Ozkaya E, Pakdemirli M. Vibrations of an axiallyaccelerating beam with small flexural stiffness[ J]. Journal of Sound Vibration, 2000, 234 : 521 - 535.
  • 4Chen L Q, Yang X D. Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models[J]. Int. J. Solids Struct, 2005,42: 37- 50.
  • 5冯志华,胡海岩.直线运动柔性梁非线性动力学——主参数共振与内共振联合激励[J].振动工程学报,2004,17(2):126-131. 被引量:31
  • 6张伟,温洪波,姚明辉.黏弹性传动带1∶3内共振时的周期和混沌运动[J].力学学报,2004,36(4):443-454. 被引量:32
  • 7陈树辉,黄建亮.轴向运动梁非线性振动内共振研究[J].力学学报,2005,37(1):57-63. 被引量:60
  • 8Chen L Q, Ding I-I. Steady-state responses of axially accelerating viscoelastic beams: Approxiate analysis and numerical confirmation [ J ]. Sci China Ser G-Phys Mech Astron, 2005, 51(11) : 1 - 15.
  • 9Chen L Q, Wang B. Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation [ J ]. European journal of Mechanics A/Solid, 2009, 28:786 - 791.
  • 10程昌钧,朱正佑.微分求积方法及其在力学应用中的若干新进展[J].上海大学学报(自然科学版),2009,15(6):551-559. 被引量:10

二级参考文献48

共引文献100

同被引文献49

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部