摘要
给出了一种利用微分求积法处理非线性轴向变速黏弹性梁的混杂边界条件的方法。利用微分求积法数值求解具有混杂边界轴向变速黏弹性梁的控制微分方程,将混杂边界条件直接引入到控制微分方程高阶导数的微分求积解权系数矩阵中。使用这种方法研究了非线性轴向变速黏弹性梁主参数共振的稳态幅频响应,并对算例的微分求积解和解析近似解做了比较。
A methodology treating hybrid support boundary condition of a nonlinear axially accelerating viscoelastic beam via differential quadrature scheme was presented. Differential quadrature scheme was employed to solve numerically nonlinear governing differential equation of an axially accelerating viscoelastic beam with hybrid supports, The procedure how the hybrid boundary condition was induced into the differential quadrature weighted coefficient matrices was explained. The steady-state response was investigated when the principal parameter resonances of the axially accelerating viscoelastic beam occured. Numerical and analytical solutions were compared in numerical examples.
出处
《振动与冲击》
EI
CSCD
北大核心
2012年第5期87-91,共5页
Journal of Vibration and Shock
基金
国家杰出青年科学基金(10725209)
长江学者和创新团队发展计划资助(IRT0844)
上海高校青年教师培养资助计划(YYY11040)
上海市教育委员会重点学科建设资助项目(J51501)
上海应用技术学院引进人才科研启动项目(YJ2011-26)
关键词
轴向变速梁
黏弹性
混杂边界
微分求积法
主参数共振
axially accelerating beam
viscoelasticity
hybrid boundary condition
differential quadrature scheme
principal parameter resonance