期刊文献+

基于变量分离和加权最小二乘法的图像复原 被引量:7

Image restoration based on variable splitting and weighted least squares
下载PDF
导出
摘要 为提高图像复原的质量和速度,提出一种新的图像复原算法。首先基于变量分离技术,加入新的约束条件,建立解决图像复原问题的目标函数;然后利用交替最小化方法,将目标函数的优化分解为两个交替迭代的过程,以获得图像复原问题的全局最优解。在求解分离得到的新变量的过程中,引入迭代重加权最小二乘法(IRLS)处理L1范式的不可微分问题。实验结果表明,提出的算法有效地解决了图像复原问题;与同类的一些算法相比,该算法在复原速度和复原效果方面均具有优势。 For improving and accelerating image restoration,this paper proposed a novel algorithm.Based on the variable splitting technology,it established an objective function with a new constraint for image restoration problem.To obtain the glo-bal optimal solution of image restoration,it used the alternating minimization method to decompose the optimization of the objective function into two alternately iterative procedures.In the procedure of calculating the new variable obtained by splitting,it introduced the iteratively reweighted least squares method to solve the non-differentiable L1 norm.The experimental results demonstrate the efficiency of the proposed algorithm,and compared with some state-of-the-art algorithms,it shows better performances on the restored results and speed.
作者 肖宿 韩国强
出处 《计算机应用研究》 CSCD 北大核心 2012年第4期1584-1587,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61070090) 国家自然科学基金青年科学基金资助项目(61102117) 淮北师范大学校青年科研项目(700442)
关键词 图像复原 约束优化问题 变量分离 交替最小化方法 迭代重加权最小二乘法 image restoration constrained optimization problems variable splitting alternating minimization method iteratively reweighted least squares
  • 相关文献

参考文献20

  • 1ELAD M,MILANFAR P,RUBINSTEIN R.Analysis versus synthesisin signal priors[J].Inverse Problems,2007,23(3):947-968.
  • 2DONOHO D L.Compressed sensing[J].IEEE Trans on Informa-tion Theory,2006,52(4):1289-1306.
  • 3FIGUEIREDO M A T,NOWAK R D.A bound optimization approachto wavelet-based image deconvolution[C]//Proc of the IEEE Inter-national Conference on Image Processing.2005:782-785.
  • 4CHOUZENOUX E,IDIER J,MOUSSAOUI S.A majorize-minimizestrategy for subspace optimization applied to image restoration[J].IEEE Trans on Image Processing,2011,20(6):1517-1528.
  • 5RUGGIERO V,SERAFINI T,ZANELLA R,et al.Iterative regulari-zation algorithms for constrained image deblurring on graphics proces-sors[J].Journal of Global Optimization,2010,48(1):145-157.
  • 6DUPE F X,FADILI J M,STARCK J L.A proximal iteration for de-convolving Poisson noisy images using sparse representations[J].IEEE Trans on Image Processing,2009,18(2):310-321.
  • 7COMBETTES P L,WAJS V R.Signal recovery by proximal forward-backward splitting[J].SIAM Journal on Multiscale Modelingand Simulation,2005,4(4):1168-1200.
  • 8NESTEROV Y.Smooth minimization of non-smooth functions[J].Mathematical Programming,2005,103(1):127-152.
  • 9BECK A,TEBOULLE M.A fast iterative shrinkage-thresholding al-gorithm for linear inverse problems[J].SIAM Journal on ImagingSciences,2009,2(1):183-202.
  • 10BECKER S,BOBIN J,CANDES E J.NESTA:a fast and accuratefirst-order method for sparse recovery[J].SIAM Journal on Imaging Sci-ences,2011,4(1):1-39.

同被引文献76

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部