期刊文献+

基于隐马尔可夫模型的转录因子文本挖掘算法 被引量:1

An HMM Based Transcription Factor Name Mining Algorithm
下载PDF
导出
摘要 提出一种基于隐马尔可夫模型的转录因子文本挖掘算法(HMM-TFM),该方法通过建立转录因子名称的词库,利用谓语筛选策略判断句子是否描述转录因子,使用隐马尔可夫模型预测单词词性,并根据前后文单词词性识别转录因子的名称.实验结果表明,HMM-TFM在英文文献中抽取转录因子名称的查全率和查准率分别可达74.2%和77.9%. A text mining algorithm named HMM-TFM(hidden Markov m odel based transcription factor name mining) was presented.The proposed algorit hm does not need a dictionary of transcription factor names.A small verb set is defined to filter sentences.Transcription factor names are mined according to the part of speech tagged by hidden Markov model.Experimental results show that the recall rate and precision of HMM-TFM come to 74.2% and 77.9%,respectively.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第2期320-322,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61073075)
关键词 隐马尔可夫模型 转录因子 文本挖掘 启动子 生物信息 hidden Markov model transcription factor text minin g promoter bioinformatics
  • 相关文献

参考文献5

  • 1ZHOU De-yu, HE Yu-lan, Kwoh C K. Semi-supervised Learning of the Hidden Vector State Model for Extracting Protein-Protein Interactions [ J]. Artificial Intelligence in Medicine, 2007, 41 (3) : 209-222.
  • 2刘洁彬,宋茂强,赵方,杨志宇.基于上下文的二阶隐马尔可夫模型[J].计算机工程,2010,36(10):231-232. 被引量:6
  • 3ZOU Ling-yun,WANG Zheng-zhi,WANG Yong-xian,et al.Combined Prediction of Transmembrane Topology andSignal Peptide of Beta-Barrel Proteins:Using a Hidden Markov Model and Genetic Algorithms[J].Computers in Biologyand Medicine,2010,40(7):621-628.
  • 4Fundel K,Guttler D,Zimmer R,et al.A Simple Approach for Protein Name Identification:Prospects and Limits[J].BMC Bioinformatics,2005,6(Suppl 1):1-15.
  • 5Yang Q,Zheng G Y,Xiong Y,et al.Qnet-BSTM:An Algorithm for Mining Transcription Factor Binding Site fromLiterature[J].Journal of Computer Research and Development,2008,45(Suppl 1):323-329.

二级参考文献3

共引文献5

同被引文献11

  • 1薛为民,陆玉昌.文本挖掘技术研究[J].北京联合大学学报,2005,19(4):59-63. 被引量:63
  • 2Sebastiani F. Machine learning in automated text categoriza- tion [ J ]. ACM computing surveys,2002,34 ( 1 ) : 1-47.
  • 3Yang Y, Liu X. A re-examination of text categorization meth- ods[C]//Proceedings of 22nd annual international ACM SI- GIR conference on research and development in information retrieval. Berkeley : [ s. n. ], 1999:42-49.
  • 4Yang Xiquan, Sun Na. The application of latent semantic inde- xing and ontology in text classification [ J ]. International jour- nal of innovative computing, information and control, 2009,5 (12) :1-9.
  • 5Vries A, Mamoulis N, Nes N, et al. Efficient k-NN search on vertically decomposed data [ C ]//Proceedings of the ACM SIGMOD conference on management of data. [ s. 1. ] : [ s. n. ] ,2002:322-333.
  • 6Liaw Y, Leow M, Wu C. Fast exact k nearest neighbors search using an orthogonal search tree [ J]. Pattern recognition ,2010, 43 (6) :2351-2358.
  • 7张玉峰,何超.基于领域本体的语义文本挖掘研究[J].情报学报,2011,30(8):832-839. 被引量:16
  • 8田丰,桂小林,杨攀,王刚,郭岳龙.采用类别相似度聚合的关联文本分类方法[J].西安交通大学学报,2012,46(12):6-11. 被引量:8
  • 9艾海麦提江.阿布来提,吐尔地.托合提,艾斯卡尔.艾木都拉.基于Naive Bayes的维吾尔文文本分类算法及其性能分析[J].计算机应用与软件,2012,29(12):27-29. 被引量:7
  • 10卢中宁,张保威.一种基于改进TF-IDF函数的文本分类方法[J].河南师范大学学报(自然科学版),2012,40(6):158-160. 被引量:6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部