期刊文献+

基于硬件性能计数器的GPU功耗预测模型 被引量:4

A GPU Power Predication Model Based on Hardware Performance Counter
下载PDF
导出
摘要 图形处理器GPU以其高性能、高能效优势成为当前异构高性能计算机系统主要采用的加速部件。虽然GPU具有较高的理论峰值能效,但其绝对功耗开销明显高于通用处理器。随着GPU在高性能计算领域的应用逐渐扩展,面向GPU的低功耗优化研究将成为该领域的重要研究方向之一。准确的功耗预测是功耗优化研究的重要前提,本文提出了基于硬件性能计数器的GPU功耗预测方法。该方法基于硬件性能计数器信息,结合GPU在部分运行频率下的功耗值,通过线性回归的方法预测处理器在其他运行频率下的功耗值。实验结果表明,该方法可以准确地预测GPU功耗。 Owing to its high performance and high power efficiency, GPU (Graphics Processing Units) has become the one of the most popular accelerators in heterogeneous high performance computing systems. Although GPU has relatively high peak power efficiency, the absolute power consumption is much higher than general-purpose CPUs. As GPUs being adopted by more high performance computing systems, the low-power optimization method specific to GPU will become one of the most hot topics in this field. Accurate power predication is an important basis for power optimization. This paper proposes a Hardware Performance Counter (HPC) based power predication method targeted for the GPU architecture. The method coordinates HPC and partial sample power consumption under specific running frequencies and makes use of the linear regression method to predicate the power consumption for other running frequencies. The experimental results validate the effectiveness of the proposed method.
作者 王桂彬
出处 《计算机工程与科学》 CSCD 北大核心 2012年第3期46-50,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60921062 60903059)
关键词 CPU-GPU异构系统 GPU功耗模型 动态电压/频率调节 CPU-GPU heterogeneous system GPU power model dynamic voltage and frequency scaling
  • 相关文献

参考文献8

  • 1TOP500SuperComputer[EB/OL].[2010-11-15].http://www.top500.org/lists/2010/11.
  • 2Collange S,Defour D,Tisserand A.Power Consumption of GPUs from a Software Perspective[C]∥Proc of the9th International Conference on Computational Science,2009:914-923.
  • 3Huang S,Xiao S,Feng W.On the Energy Efficiency of Graphics Processing Units for Scientific Computing[C]∥Proc of the2009IEEE International Symposium on Parallel&Distributed Processing,2009.
  • 4Takizawa H,Sato1K,Kobayashi H.SPRAT:Runtime Processor Selection for Energy-aware Computing[C]∥Proc of the Third International Workshop on Automatic Perform-ance Tuning,2008:386-393.
  • 5AMD Corp.AMD Accelerated Parallel Processing OpenCL Programming Guide[R].2010.
  • 6AMD Fusion Family of APUs Technology Overview[EB/OL].[2011-03-15].http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx.
  • 7Lee B C,Brooks D M.Accurate and Efficient Regression Modeling for Microarchitectural Performance and Power Prediction[C]∥Proc of the12th International Conference on Architectural Support for Programming Languages and Op-erating Systems,2006:185-194.
  • 8AMD Display Library SDK[EB/OL].[2010-03-15].http://developer.amd.com/gpu/adlsdk/Pages/default.aspx.

同被引文献33

  • 1江修波.ZigBee技术及其应用[J].低压电器,2005(7):27-29. 被引量:67
  • 2徐勇军,陈静华,骆祖莹,李晓维.CMOS电路动静态功耗协同分析[J].计算机工程,2006,32(10):231-233. 被引量:1
  • 3畅秋.ZigBee发展方兴未艾[J].电子设计应用,2006(10):128-128. 被引量:1
  • 4黄琨,张戈,王君,曾洪博.基于物理反标的处理器功耗建模与评估方法[J].计算机辅助设计与图形学学报,2007,19(11):1471-1475. 被引量:4
  • 5WANG H F, CHEN Q K. Power consumption model of reliability-aware GPU clusters [ J ]. The Journal of Su- percomputing, 2013, 26 ( 7 ) : 993-10 1 4.
  • 6WANG H F, CHEN Q K. Power estimating model and analysis of general programming on GPU [ J ]. Journal of Software, 2012, 7(5):1164-1170.
  • 7MAI A, HASAN A. A bluetooth low energy implantable glucose monitoring system [ C ]. Proceedings of the 41st European Microwave Conference, Manchester, UK, 2011 : 1265-1268.
  • 8YU B, XU L SH, LI Y X. Bluetooth low energy (BLE) based mobile electrocardiogram monitoring system [ C ]. International Conference on Information and Automa- tion, Shenvan~. China. 2012:763-1170.
  • 9CHEN Q K, WANG H F. ZHUANG S L, et al. Parallel algorithm of IDCT with GPUs and CUDA for large-scale video quality of 3G [ J ]. Journal of Computers, 2012, 7 (8) :1880-1886.
  • 10欧阳骏,陈子龙,黄宇淋.蓝牙4.OBLE开发完伞手册-物联网开发技术实践[M].北京:化学工业出版社,2013.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部