期刊文献+

基于BP神经网络的电子鼻羊奶贮藏时间的预测 被引量:5

Discrimination of fresh goat milk during storing based on electronic nose by BP neural network
原文传递
导出
摘要 利用电子鼻PEN3系统判定室温和冷藏条件下羊奶的贮藏时间。通过电子鼻系统采集羊奶室温贮藏及冷藏期间挥发性成分的响应值,并采用PCA(主成分分析法)、LDA(线性判别分析法)和LM算法优化的BP神经网络(LM-BP)、遗传算法优化的神经网络(GANN)、4层BP神经网络进行模式识别。结果表明PCA和LDA均可区分室温贮藏及冷藏1~6d的生鲜羊奶,LDA方法还可以明显体现出羊奶贮藏期间挥发性成分的变化趋势,并且与羊奶酸度的变化有很好的一致性。采用LM-BP神经网络、GANN神经网络和4层神经网络均能较好地预测不同贮藏时间的羊奶,其中4层神经网络的预测正确率高于LM-BP神经网络和GANN神经网络。 The classification of different storage time of fresh goat milk at ambient temperature and refrigerated temperature was detected by an electronic nose. The volatile composition emanating from the goat milk was sampled by PEN3 systems,and the response values of PEN3 were obtained.The data was analyzed using PCA (principal component analysis)and LDA (linear discrimination analysis), the combination of a Levenberg- Marquardt algorithm and BP neural network (LM-BP), the combination of a genetic algorithm and BP neural network(GANN) and 4 layer BP neural network.The results showed that electronic nose was able to classify fresh goat milk during 1-6d storing at ambient temperature and refrigerated temperature by PCA and LDA,however LDA showed variation trend of volatile composition clearly which had a great agreement with acidity of the samples. Better prediction values were obtained bv 4 laver BP neural network than GANN and LM-BP.
作者 张虹艳 丁武
出处 《食品工业科技》 CAS CSCD 北大核心 2012年第6期377-381,共5页 Science and Technology of Food Industry
基金 公益性行业科研专项经费项目(3-45) 西北农林科技大学校青年学术骨干支持计划
关键词 电子鼻 羊奶 贮藏时间 温度 模式识别 electronic nose goat milk storing time temperature pattern recognition
  • 相关文献

参考文献17

  • 1Tikk K,Haugen J E,Andersan H J,et al.Monitoring of warmed-over flavor in pork using the electronic nose-correlation to sensory attributes and secondary lipid oxidation products[J].Meat Science,2008,80(4):1254-1263.
  • 2Concina I,Falasconi M,Gobbi E,et al.Early detection of microbial contamination in processed tomatoes by electronic nose[J].Food Control,2009,20(10):873-880.
  • 3Balasubramanian S,Panigrahi S,Logue C M,et al.Independent component analysis-processed electronic nose data for predicting Salmonella typhimurium populations in contaminated beef[J].Food Control,2008,19(3):236-246.
  • 4Horvath K,Andrassy E,Korbasz M,et al.Using automatic conductimetry formonitoring spoilage bacteria on chilled pork cutlets[J].Acta Alimentaria,2007,36(2):283-291.
  • 5Barbri N,Llobet E,Bari N,et al.Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat[J].Sensors,2008,8(1):142-156.
  • 6孙钟雷.电子鼻技术在猪肉新鲜度识别中的应用[J].肉类研究,2008,22(2):50-53. 被引量:46
  • 7Torri L,Sinelli N,Limbo S.Shelf life evaluation of fresh-cutpineapple by using an electronic nose[J].Postharvest Biology and Technology,2010,56(3):239-245.
  • 8于慧春,王俊,张红梅,于勇.龙井茶叶品质的电子鼻检测方法[J].农业机械学报,2007,38(7):103-106. 被引量:68
  • 9Campagnoli A,Dell’orto V,Sanoini G,et al.Screening cereals quality by electronic nose:The example of mycotoxins naturally contaminated maize and durum wheat[J].Olfaction and Electronic Nose,Proceedings,2009,1137:507-510.
  • 10鲁小利,海铮,王俊.可乐饮料的电子鼻检测研究[J].浙江大学学报(农业与生命科学版),2006,32(6):677-682. 被引量:26

二级参考文献38

  • 1邹小波,赵杰文,潘胤飞,黄星奕.基于遗传RBF网络的电子鼻对苹果质量的评定[J].农业机械学报,2005,36(1):61-64. 被引量:26
  • 2石志标,左春柽,杨长明.仿生鼻系统的试验研究[J].农业机械学报,2005,36(2):70-72. 被引量:8
  • 3鲁小利,海铮,王俊.可乐饮料的电子鼻检测研究[J].浙江大学学报(农业与生命科学版),2006,32(6):677-682. 被引量:26
  • 4胡桂仙,王俊,海铮,王小骊.不同储藏时间柑橘电子鼻检测研究[J].浙江农业学报,2006,18(6):458-461. 被引量:63
  • 5GOMEZ A H, HU Guixian, WANG Jun, et al. Evaluation of tomato maturity by electronic nose[J]. Computers and Electronics in Agriculture, 2006, 54: 44-52.
  • 6SAEVELS S, LAMMERTYN J, BERNA A Z, et al. An electronic nose and a mass spectrometry based electronic nose for assessing apple quality during shelf life[J]. Postharvest Biology and Technology, 2004, 31: 9- 19.
  • 7BENEDETTI S, DRUSCH S, MANNINO S. Monitoring of autoxidation in LCPUFA-enriched lipid microparticles by electronic nose and SPME-GCMS[J]. Talanta, 2009, 78: 1266-1271.
  • 8CONCINA I, FALASCONI M, GOBBI E, et al. Early detection of microbial contamination in processed tomatoes by electronic nose[J]. Food Control, 2009, 20: 873-880.
  • 9MASOERO G, SALA G, PEIRETrI P G. Development of near infrared (NIR) spectroscopy and electronic nose (EN) techniques to analyse the conservation quality of farm silages[J]. Journal of Food Agriculture and Environment, 2007, 5(1): 172-177.
  • 10KIM M Y, SEGUIN P, AHN J K, et al. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea[J]. Journal of Agricultural and Food Chemistry, 2008, 56(16): 7265-7270.

共引文献168

同被引文献98

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部