期刊文献+

自主水下机器人深海热液羽流追踪仿真环境 被引量:3

A Simulation Environment for Deep-Sea Hydrothermal Plume Tracing with Autonomous Underwater Vehicles
原文传递
导出
摘要 提出用自主水下机器人(autonomous underwateer vehicle,AUV)基于仿生行为追踪深海热液羽流,进而快速、精确定位海底热液喷口;并针对AUV追踪深海热液羽流的仿生控制策略研究需要,设计、实现了一个计算机仿真环境.首先介绍了基于AUV的深海热液羽流追踪和该仿真环境的模块化构成,然后给出了仿真环境中的流场和羽流仿真模块所采用的仿真模型及其高效的数值求解算法,和为便于蒙特卡洛仿真而设置的一组随机初始条件和边界条件,以及介绍了控制系统仿真模块采用的一种基于行为的模块化的AUV控制系统体系结构.该仿真环境体现了AUV追踪热液羽流的仿生控制策略研究的问题复杂性因素,包括流场非均匀和非定常,羽流分布不规则、不连续、空间尺度大,羽流轴线弯曲,以及羽流含有浮力上升部分和包含非守恒示踪物质,并且具有较好的可视化效果.同时,该仿真环境具有较高的计算效率,适合于实时仿真和蒙特卡洛仿真研究.分析和演示表明,该仿真环境满足研究需要,为AUV追踪深海热液羽流的仿生控制策略研究提供了有力的支持. For using an autonomous underwater vehicle (AUV) to localize seafloor hydrothermal vents fast and accurately, a biomimetic approach to hydrothermal plume tracing is proposed. And to support the investigation of AUV's biologicallyinspired control strategies, a graphical simulation environment is designed and developed. In this paper, hydrotherrnal plume tracing with AUVs and the modular architecture of the simulation environment are firstly introduced and described. Then, the modules of hydrothermal plume and flow field in simulation environment are modeled, and the efficient numerical solution algorithms are given. To facilitate Monte Carlo simulation, a set of stochastic initial and boundary conditions are set. And the modular behavior-based AUV control system architecture employed in the control system module is mainly described. The simulation environment addresses the key factors that complicate the investigation of AUV's biologically-inspired con- trol strategies for the hydrothermal plume tracing, including the current field being non-uniform and non-steady, the plume distribution being irregular, intermittent and of large scale, the plume centreline being meandrous, and the plume contain- ing buoyant part and nonconservative tracer. In addition, this simulation environment achieves good visual effect and high computational efficiency, which allows it to be suitable for real-time simulation and Monte Carlo simulation studies. The presented simulation environment provides sufficient support for the investigation of AUV's biologically-inspired control strategies for hydrothermal plume tracing.
出处 《机器人》 EI CSCD 北大核心 2012年第2期159-169,196,共12页 Robot
基金 国家自然科学基金资助项目(61075085 41106085) 机器人学国家重点实验室自主课题(2009-Z03)
关键词 自主水下机器人 海底热液喷口定位 羽流追踪 湍羽流仿真 autonomous underwater vehicle seafloor hydrothermal vent localization plume tracing turbulent plume simulation
  • 相关文献

参考文献28

  • 1杜同军,翟世奎,任建国.海底热液活动与海洋科学研究[J].青岛海洋大学学报(自然科学版),2002,32(4):597-602. 被引量:13
  • 2夏建新,李畅,马彦芳.深海底热液活动研究热点[J].地质力学学报,2007,13(2):179-191. 被引量:18
  • 3杨作升,范德江,李云海,王厚杰.热液羽状流研究进展[J].地球科学进展,2006,21(10):999-1007. 被引量:12
  • 4翟世奎,李怀明,于增慧,于新生.现代海底热液活动调查研究技术进展[J].地球科学进展,2007,22(8):769-776. 被引量:11
  • 5Jakuba M V.Stochastic mapping for chemical plume source localization with application to autonomous hydrothermal vent discovery[D].USA:WHOI-MIT,2007.
  • 6German C R,Yoerger D R,Jakuba M,et al.Hydrothermal exploration by AUV:Progress to-data with ABE in the Pacific, Atlantic & Indian Oceans[C]//IEEE/OES Autonomous Underwater Vehicles.Piscataway,NJ,USA:IEEE,2008:1-5.
  • 7McPhail S,Stevenson P,Pebody M,et al.Challenges of using an AUV to find and map hydrothermal vent sites in deep and rugged terrains[C]//Autonomous Underwater Vehicles,2010 IEEE/OES.Piscataway,NJ,USA:IEEE,2010:1-8.
  • 8Yoerger D R,Bradley A M,Jakuba M V,et al.Autonomous and remotely operated vehicle technology for hydrothermal vent discovery,exploration,and sampling[J].Oceanography,2007, 20(1):152-161.
  • 9Baker E T,German C R,Elderfield H.Hydrothermal plumes over spreading-center axes:Global distributions and geological inference[M]//Humphris S E,Zierenberg R A,Mullineaux L S, et al.Seafloor hydrothermal systems:Physical,chemical,biological, and geological interactions.Washington DC,WA,USA: American Geophysical Union,1995:47-71.
  • 10Yoerger D R,Jakuba M V,Bradley A M,et al.Techniques for deep sea near bottom survey using an autonomous underwater vehicle[J].International Journal of Robotics Research,2007, 26(1):41-54.

二级参考文献130

共引文献44

同被引文献46

  • 1傅金祝.美国海军反水雷能力和无人反水雷平台装备分析[J].现代舰船,2011(7):44-47. 被引量:10
  • 2DUSENBERY D B. Sensory Ecology:How Organisms Acquire and Respond to Information [ M ]. WH Freeman and Co, New York, 1992.
  • 3VICKERS N J. Mechanisms of animal navigation in odor plumes [ J ]. Biological Bulletin,2000, 198 ( 2 ) :203 - 212.
  • 4ZIMMER R K, BUTMAN C A. Chemical signaling processes in the marine environment [ J ]. Biological Bulletin, 2000,198 ( 2 ) : 168 - 187.
  • 5HASSLER A D, SCHOLZ A T. Olfactory Imprinting and Homing in Salmon[ M]. Springer-Verlag,New York,1983.
  • 6NEVITr G A. Olfactory foraging by antartic proellariiform sea- birds: Life at high Reynolds numbers [ J ]. Biological Bulletin, 2000,198(4) :245 -253.
  • 7CARDER T, Mafra-Neto A. Effect of pheromone plume structure on moth orientation to pheromone[J]. Perspectives on Insect Pher- omones, 1996,275 - 290.
  • 8CARDER T. Odour plumes and odour-mediated flight in insects [J]. Ciba Found Syrup. 1996,200:54-70.
  • 9Mafra-Neto A and CARDER T. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths[J]. Nature, 1994,369:142 - 144.
  • 10BELL W J, TOBIN T R. Chemo-orientation [ J]. Biol. Rev. 1982,57:219 - 260.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部