期刊文献+

Spectral characteristics of micro-seismic signals obtained during the rupture of coal 被引量:2

Spectral characteristics of micro-seismic signals obtained during the rupture of coal
下载PDF
导出
摘要 This study was performed to investigate the spectral characteristics of micro-seismic signals observed during the rupture of coal. Coal rupture micro-seismic observations were obtained on a test system that included an electro-hydraulic servo pressure tester controlled by a YAW microcomputer, a micro-seismic sensor, a loading system, and a signal collection system. The results show that the micro-seismic signal increases with increasing compressive stress at the beginning of coal rupture. The signal remains stable for a period at this stage. A large number of micro-seismic signals appear immediately before the main rupture event. The frequency of micro-seismic events reaches a maximum immediately after the coal ruptures. Micro-seismic signals were decomposed into several Intrinsic Mode Functions (IMF's) by the empirical mode decomposition (EMD) method using a Hilbert-Huang transform (HHT). The main fre- quency band of the micro-seismic signals was found to range from 10 to 100 Hz in the Hilbert energy spectrum and from marginal spectrum calculations. The advantage of applying an HHT is that this can extract the main features of the signal. This fact was confirmed by an HHT analysis of the coal micro-seis- mic signals that shows the technique is useful in the field of coal rupture. This study was performed to investigate the spectral characteristics of micro-seismic signals observed during the rupture of coal. Coal rupture micro-seismic observations were obtained on a test system that included an electro-hydraulic servo pressure tester controlled by a YAW microcomputer, a micro-seismic sensor, a loading system, and a signal collection system. The results show that the micro-seismic signal increases with increasing compressive stress at the beginning of coal rupture. The signal remains stable for a period at this stage. A large number of micro-seismic signals appear immediately before the main rupture event. The frequency of micro-seismic events reaches a maximum immediately after the coal ruptures. Micro-seismic signals were decomposed into several Intrinsic Mode Functions (IMF's) by the empirical mode decomposition (EMD) method using a Hilbert-Huang transform (HHT). The main fre- quency band of the micro-seismic signals was found to range from 10 to 100 Hz in the Hilbert energy spectrum and from marginal spectrum calculations. The advantage of applying an HHT is that this can extract the main features of the signal. This fact was confirmed by an HHT analysis of the coal micro-seismic signals that shows the technique is useful in the field of coal rupture.
出处 《Mining Science and Technology》 EI CAS 2011年第5期641-645,共5页 矿业科学技术(英文版)
基金 support for this work provided by the National Science and Technology Planning Project (No. 2009BAK54B03) the National Natural Science Foundation of China (No. 50834005)
关键词 CoalRuptureMicro-seismic signalSpectrum characteristic 地震信号 破裂过程 光谱特征 煤炭 国际货币基金组织 HHT方法 Hilbert 信号采集系统
  • 相关文献

参考文献10

二级参考文献53

共引文献1015

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部