期刊文献+

改进粒子群优化算法的BP神经网络在机车滚动轴承故障诊断中的应用 被引量:9

Application of BP neural network based on improved PSO Algorithm in fault diagnosis of locomotive rolling bearing
下载PDF
导出
摘要 本文提出了一个基于改进粒子群优化算法的BP神经网络优化模型来进行轴承故障诊断,此模型融合粒子群优化算法的全局寻优能力和BP神经网络算法的局部搜索的优势,有效地防止了网络陷入局部极小值,同时又保证了诊断结果的精确性。仿真结果表明机车滚动轴承故障得到了有效诊断。相比于常规的BP神经网络模型,此方法不仅改进网络的收敛速度并且提高了预测准确性。 In this paper,a BP neural network model based on improved PSO was presented and applied it for bearing fault diagnosis,combined with PSO Algorithm for global optimization ability and BP neural network advantages of local search,the model effectively prevented the network into a local minimum,at the same,time guaranteed the accuracy of diagnosis.Simulation results showed that the locomotive rolling bearings was effectively diagnosed.Compared with the conventional BP neural network model,this method not only improvesd the convergence speed,but also improved the prediction accuracy.
出处 《铁路计算机应用》 2012年第2期9-12,16,共5页 Railway Computer Application
关键词 滚动轴承 粒子群优化算法 BP神经网络 诊断 rolling bearing PSO algorithm BP neural network diagnosis
  • 相关文献

参考文献10

二级参考文献26

  • 1颜延虎,钟秉林,黄仁,万德均.神经网络技术及其在旋转机械故障诊断中的应用[J].振动工程学报,1993,6(3):205-212. 被引量:23
  • 2潘紫微,徐金梧.基于神经网络的自适应故障模式分类方法[J].北京科技大学学报,1995,17(3):264-269. 被引量:5
  • 3谭工.神经网络在轴承故障诊断中的应用[J].模糊系统与数学,1995,9(3):89-93. 被引量:2
  • 4严新民,马建仓,罗磊.BP神经网络在滚动轴承早期故障诊断中的应用[J].机械科学与技术,1996,15(3):464-467. 被引量:4
  • 5Kennedy J, Eberhart R C.Particle swarm optimization [C]. Proceedings of the IEEE International Conference on Neural Networks, 1995:1942-1948.
  • 6Holland J H. Adaptation in natural and artificial systems [M]. University Michigan Press, 1975.
  • 7Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization [J]. Natural Computing,2002,1 (3):235-306.
  • 8Hu X,Eberhart R C.Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proceedings of the IEEE congress on Evolutionary Computation, 2002: 1677-1681.
  • 9Hu X,Eberhart R C.Adaptive particle swarm optimization: detection and response to dynamic system[C]. Proceedings of the IEEE congress on Evolutionary Computation,2002:1666-1670.
  • 10Laskari E C,Parsopoulos K E,Vrahatis M N.Particle swarm optimization for maximum problems[C]. Proceedings of the IEEE Congress on Evolutionary computation, 2002:1582-1587.

共引文献190

同被引文献98

引证文献9

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部